Attention-guided multiple instance learning for COPD identification: To combine the intensity and morphology

人工智能 计算机科学 快照(计算机存储) 模式识别(心理学) 特征提取 操作系统
作者
Yanan Wu,Shouliang Qi,Jie Feng,Runsheng Chang,Haowen Pang,Jie Hou,Mengqi Li,Yingxi Wang,Shuyue Xia,Wei Qian
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:43 (3): 568-585 被引量:7
标识
DOI:10.1016/j.bbe.2023.06.004
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and multi-component respiratory disease. Computed tomography (CT) images can characterize lesions in COPD patients, but the image intensity and morphology of lung components have not been fully exploited. Two datasets (Dataset 1 and 2) comprising a total of 561 subjects were obtained from two centers. A multiple instance learning (MIL) method is proposed for COPD identification. First, randomly selected slices (instances) from CT scans and multi-view 2D snapshots of the 3D airway tree and lung field extracted from CT images are acquired. Then, three attention-guided MIL models (slice-CT, snapshot-airway, and snapshot-lung-field models) are trained. In these models, a deep convolution neural network (CNN) is utilized for feature extraction. Finally, the outputs of the above three MIL models are combined using logistic regression to produce the final prediction. For Dataset 1, the accuracy of the slice-CT MIL model with 20 instances was 88.1%. The backbone of VGG-16 outperformed Alexnet, Resnet18, Resnet26, and Mobilenet_v2 in feature extraction. The snapshot-airway and snapshot-lung-field MIL models achieved accuracies of 89.4% and 90.0%, respectively. After the three models were combined, the accuracy reached 95.8%. The proposed model outperformed several state-of-the-art methods and afforded an accuracy of 83.1% for the external dataset (Dataset 2). The proposed weakly supervised MIL method is feasible for COPD identification. The effective CNN module and attention-guided MIL pooling module contribute to performance enhancement. The morphology information of the airway and lung field is beneficial for identifying COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝麻糊发布了新的文献求助10
刚刚
刚刚
于平川春野完成签到 ,获得积分10
1秒前
1秒前
QFeng完成签到,获得积分10
2秒前
2秒前
沙不凡发布了新的文献求助10
2秒前
尊敬的飞槐完成签到,获得积分10
3秒前
4秒前
科研通AI5应助灯与鬼采纳,获得10
4秒前
烟花应助嗣音采纳,获得10
4秒前
晨雾锁阳发布了新的文献求助30
5秒前
上官若男应助昀颂采纳,获得10
5秒前
Lucas应助捏捏我的小短腿采纳,获得10
5秒前
大个应助LR采纳,获得10
6秒前
xieqiuen完成签到,获得积分10
6秒前
Imin发布了新的文献求助10
7秒前
7秒前
DSFSR完成签到,获得积分10
8秒前
9秒前
是三石啊完成签到 ,获得积分10
9秒前
10秒前
带你去喝雪碧完成签到,获得积分20
10秒前
枫影发布了新的文献求助10
10秒前
大聪明发布了新的文献求助10
11秒前
12秒前
zhangjianan完成签到,获得积分20
12秒前
洋洋羊发布了新的文献求助10
13秒前
kingwill举报传统的妖妖求助涉嫌违规
13秒前
14秒前
14秒前
15秒前
dddd发布了新的文献求助10
16秒前
jj发布了新的文献求助10
16秒前
16秒前
HZY完成签到,获得积分10
18秒前
18秒前
18秒前
miemie发布了新的文献求助10
18秒前
lucky1016完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794928
求助须知:如何正确求助?哪些是违规求助? 3339887
关于积分的说明 10297885
捐赠科研通 3056485
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805104
科研通“疑难数据库(出版商)”最低求助积分说明 762333