已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributed Hybrid Dynamic Event-Triggered Consensus Control for Nonlinear Multi-Agent Systems

多智能体系统 李普希茨连续性 计算机科学 非线性系统 共识 事件(粒子物理) 控制理论(社会学) 控制器(灌溉) 分布式计算 国家(计算机科学) 机制(生物学) 协议(科学) 控制(管理) 人工智能 数学 算法 数学分析 哲学 病理 物理 认识论 生物 替代医学 医学 量子力学 农学
作者
Yuan Wang,Fanglai Zhu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tase.2024.3524258
摘要

This article addresses both leaderless and leader-following consensus issues for Lipschitz nonlinear multi-agent systems. To begin with, the issues are discussed in view of leaderless scenarios. Firstly, a distributed dynamic event-triggered mechanism is introduced to mitigate continuous communication burdens among neighboring agents. This mechanism incorporates an open-loop estimation algorithm and an inner self-learning term into the triggering conditions. Secondly, to prevent Zeno behavior, a time/event hybrid mechanism is implemented. For each agent, based on the local state information at the current event-triggered instant and the recent event-triggered instant receiving from neighbors, open-loop state estimations are conducted. Then, by utilizing these open-loop state estimations, a distributed adaptive control protocol is developed within the framework of the hybrid dynamic event-triggered mechanism, including an updating mechanism for the coupling strength of each agent. The challenge posed by the Lipschitz nonlinearity is addressed by solving a Riccati equation. Additionally, the proposed method is improved to be suitable for leader-following multi-agent systems. Finally, simulation examples demonstrate the effectiveness of the proposed method. Note to Practitioners —The purpose of this paper is to introduce a hybrid dynamic event-triggered mechanism aimed at reducing the communication load in Lipschitz nonlinear multi-agent systems. By integrating a hybrid mechanism that combines both time-based and event-based triggers, the proposed scheme effectively minimizes unnecessary data exchanges among agents while naturally excluding the Zeno behavior. This is particularly advantageous in practical scenarios where bandwidth is limited or efficiency in data transmission is highly required in applications. The introduction of open-loop estimators ensures that continuous communication between two neighboring agents is not required. Furthermore, the introduction of an adaptive control protocol, which incorporates a projection algorithm for dynamically adjusting coupling gains, ensures that the interactions between agents remain within safe operational limits. The projection algorithm ensures that the adaptive gain remains within a prescribed range, thus preventing it from growing excessively and preserving system stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟里戏完成签到 ,获得积分10
1秒前
mickaqi完成签到 ,获得积分10
3秒前
自由橘子完成签到 ,获得积分10
4秒前
7秒前
火星上宛秋完成签到 ,获得积分10
7秒前
我是125完成签到,获得积分10
8秒前
8秒前
能干的海露完成签到,获得积分10
9秒前
神外王001完成签到 ,获得积分10
9秒前
drfwjuikesv完成签到,获得积分10
10秒前
科研通AI6应助氦hai采纳,获得10
11秒前
神奇的蒲公英完成签到,获得积分10
12秒前
lingo发布了新的文献求助10
14秒前
15秒前
浔初先生发布了新的文献求助10
16秒前
16秒前
范ER完成签到 ,获得积分10
17秒前
19秒前
21秒前
22秒前
单薄的英姑完成签到 ,获得积分10
23秒前
zoye完成签到 ,获得积分10
23秒前
脑洞疼应助wop111采纳,获得10
23秒前
科研通AI5应助111111采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
吃梨小手完成签到 ,获得积分10
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
彭于晏应助Carl采纳,获得10
28秒前
31秒前
Kashing发布了新的文献求助10
35秒前
qiu完成签到 ,获得积分10
35秒前
36秒前
38秒前
欣喜书易完成签到 ,获得积分10
39秒前
Kashing完成签到,获得积分0
39秒前
Carl发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4843964
求助须知:如何正确求助?哪些是违规求助? 4144651
关于积分的说明 12833212
捐赠科研通 3891093
什么是DOI,文献DOI怎么找? 2138944
邀请新用户注册赠送积分活动 1159075
关于科研通互助平台的介绍 1059104