A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability

双稳态 扭矩 超弹性材料 棘轮 控制理论(社会学) 机制(生物学) 工程类 计算机科学 物理 有限元法 工作(物理) 机械工程 结构工程 控制(管理) 量子力学 人工智能 热力学
作者
Woo-Young Choi,Woongbae Kim,Jin-Sung Choi,Sung Yol Yu,S.I. Moon,Yong-Jai Park,Kyu‐Jin Cho
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:10 (98)
标识
DOI:10.1126/scirobotics.ado7696
摘要

Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages. However, the current intricacy of artificial torque-reversal mechanisms, which require sophisticated kinematics/kinetics, constrains design possibilities for soft joints and devices. Here, we harnessed hyperelasticity to implement a torque-reversal mechanism in a soft joint, generating repetitive cilia-like beating motions through an embedded tendon. The developed hyperelastic torque-reversal mechanism (HeTRM) exhibits transient bistability under a specific compressive displacement/force threshold, with snap-through occurring at the point where the transience ends. To validate the effectiveness of this design principle, we explored the functionalities of HeTRM in energy storage and release, dual modes for impulsive and continuous motion, mechanical fuse, and rapid three-dimensional motions, through proof-of-concept soft machines. We expect that this design principle provides insight into incorporating snap-through behavior in soft machines and may aid in understanding the relationship between torque-reversal mechanisms and bistability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小泓发布了新的文献求助10
1秒前
力大小白猪完成签到,获得积分20
4秒前
钱念波发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得20
6秒前
6秒前
星空完成签到 ,获得积分10
7秒前
北秋颐发布了新的文献求助10
8秒前
小泓完成签到,获得积分10
8秒前
10秒前
落落完成签到 ,获得积分10
12秒前
曾经的沧海完成签到 ,获得积分10
14秒前
结实的啤酒完成签到 ,获得积分10
17秒前
肉丸完成签到 ,获得积分10
19秒前
vidgers完成签到 ,获得积分10
20秒前
mingga完成签到,获得积分10
22秒前
wuyuyu5413完成签到,获得积分10
25秒前
源老头完成签到,获得积分10
27秒前
南城以南完成签到,获得积分10
27秒前
ningwu完成签到,获得积分10
29秒前
31秒前
呆鸥完成签到,获得积分10
32秒前
gej完成签到,获得积分10
34秒前
pokexuejiao发布了新的文献求助30
35秒前
zxj完成签到 ,获得积分10
36秒前
橙子完成签到 ,获得积分10
38秒前
40秒前
46秒前
zxj发布了新的文献求助20
47秒前
48秒前
艳艳宝完成签到 ,获得积分10
52秒前
WSDD-ya发布了新的文献求助10
53秒前
周周发布了新的文献求助10
54秒前
坚强白玉完成签到,获得积分10
58秒前
可乐加冰完成签到,获得积分10
1分钟前
shw完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751