CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images

分割 雅卡索引 计算机科学 人工智能 深度学习 Sørensen–骰子系数 模式识别(心理学) 特征(语言学) 背景(考古学) 编码器 图像分割 生物 古生物学 语言学 哲学 操作系统
作者
Sadia Din,Muhammad Shoaib,Erchin Serpedin
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 167-167
标识
DOI:10.3390/bioengineering12020167
摘要

Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨永佳666完成签到 ,获得积分10
1秒前
诸绿柳发布了新的文献求助10
3秒前
沉静的砖头完成签到 ,获得积分10
10秒前
儿学化学打断腿完成签到,获得积分10
14秒前
诸绿柳完成签到,获得积分10
17秒前
公子商完成签到 ,获得积分10
19秒前
Axs完成签到,获得积分10
25秒前
林夕完成签到 ,获得积分10
25秒前
快乐太英完成签到 ,获得积分10
32秒前
迅速的幻雪完成签到 ,获得积分10
33秒前
和谐的果汁完成签到 ,获得积分10
37秒前
38秒前
独特听芹完成签到,获得积分10
39秒前
cq_2完成签到,获得积分0
49秒前
haochi完成签到,获得积分10
50秒前
灰鸽舞完成签到 ,获得积分10
50秒前
momo妈咪完成签到 ,获得积分10
52秒前
Adam完成签到 ,获得积分10
54秒前
端庄代荷完成签到 ,获得积分10
54秒前
cdercder应助科研通管家采纳,获得10
58秒前
耸耸完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
五月完成签到 ,获得积分10
1分钟前
霍霍完成签到 ,获得积分10
1分钟前
1分钟前
white完成签到,获得积分10
1分钟前
Sissi完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦的迎南完成签到 ,获得积分10
1分钟前
清秀的之桃完成签到 ,获得积分10
1分钟前
AU完成签到 ,获得积分10
1分钟前
Yynnn完成签到 ,获得积分10
1分钟前
昔昔完成签到 ,获得积分10
1分钟前
zhuazhua完成签到 ,获得积分10
1分钟前
sganthem完成签到,获得积分10
1分钟前
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
ccc完成签到 ,获得积分10
1分钟前
2分钟前
巴啦啦能量完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301000
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626