CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images

分割 雅卡索引 计算机科学 人工智能 深度学习 Sørensen–骰子系数 模式识别(心理学) 特征(语言学) 背景(考古学) 编码器 图像分割 生物 语言学 操作系统 哲学 古生物学
作者
Sadia Din,Muhammad Shoaib,Erchin Serpedin
出处
期刊:Bioengineering [MDPI AG]
卷期号:12 (2): 167-167
标识
DOI:10.3390/bioengineering12020167
摘要

Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22222发布了新的文献求助10
1秒前
1秒前
稳重傲柔发布了新的文献求助10
1秒前
自信机器猫完成签到 ,获得积分20
1秒前
2秒前
2秒前
2秒前
PSQ发布了新的文献求助10
2秒前
3秒前
清爽熊猫完成签到,获得积分10
3秒前
latte完成签到,获得积分10
4秒前
科研通AI6应助ludong_0采纳,获得10
4秒前
Nwafu完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助科研小白采纳,获得10
5秒前
所所应助haomozc采纳,获得10
5秒前
5秒前
6秒前
UY发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
潘凯歌发布了新的文献求助10
9秒前
夏守诚完成签到,获得积分10
10秒前
我是老大应助卑微小何采纳,获得10
10秒前
xtz发布了新的文献求助50
11秒前
12秒前
aaa完成签到,获得积分10
12秒前
沉默笑寒完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
LNE发布了新的文献求助10
14秒前
15秒前
刻苦的小熊猫完成签到 ,获得积分10
15秒前
15秒前
汉堡包应助jarrettee采纳,获得10
16秒前
Qiaoclin完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131