亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Risk Prediction Model for Sarcopenia in Chinese Older Patients with Type 2 Diabetes Mellitus

肌萎缩 医学 糖尿病 2型糖尿病 老年学 内科学 内分泌学
作者
Xinming Wang,Shengnan Gao
出处
期刊:Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy [Dove Medical Press]
卷期号:Volume 17: 4611-4626
标识
DOI:10.2147/dmso.s493903
摘要

Sarcopenia is a common prevalent age-related disorder among older patients with type 2 diabetes mellitus (T2DM). This study aimed to develop and validate a nomogram model to assess the risk of incident sarcopenia among older patients with T2DM. A total of 1434 older patients (≥ 60 years) diagnosed with T2DM between May 2020 and November 2023 were recruited. The study cohort was randomly divided into a training set (n = 1006) and a validation set (n = 428) at the ratio of 7:3. The best-matching predictors of sarcopenia were incorporated into the nomogram model. The accuracy and applicability of the nomogram model were measured by using the area under the receiver operating characteristic curve (AUC), calibration curve, Hosmer-Lemeshow test, and decision curve analysis (DCA). 571 out of 1434 participants (39.8%) had sarcopenia. Nine best-matching factors, including age, body mass index (BMI), diabetic duration, glycated hemoglobin A1c (HbA1c), 25 (OH)Vitamin D, nephropathy, neuropathy, nutrition status, and osteoporosis were selected to construct the nomogram prediction model. The AUC values for training and validation sets were 0.800 (95% CI = 0.773-0.828) and 0.796 (95% CI = 0.755-0.838), respectively. Furthermore, the agreement between predicted and actual clinical probability of sarcopenia was demonstrated by calibration curves, the Hosmer-Lemeshow test (P > 0.05), and DCA. Sarcopenia was prevalent among older patients with T2DM. A visual nomogram prediction model was verified effectively to evaluate incident sarcopenia in older patients with T2DM, allowing targeted interventions to be implemented timely to combat sarcopenia in geriatric population with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leofar完成签到 ,获得积分10
10秒前
情怀应助qq采纳,获得10
29秒前
顺利的迎松完成签到,获得积分20
50秒前
无情的水香完成签到 ,获得积分10
54秒前
番茄鱼完成签到 ,获得积分10
1分钟前
Starry发布了新的文献求助10
2分钟前
忽远忽近的她完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
李爱国应助顺心亦云采纳,获得10
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
123完成签到,获得积分10
3分钟前
4分钟前
4分钟前
enchanted完成签到,获得积分10
4分钟前
4分钟前
悄悄完成签到,获得积分10
4分钟前
Tumumu完成签到,获得积分10
5分钟前
HS完成签到,获得积分10
5分钟前
。?。完成签到 ,获得积分10
5分钟前
心随以动完成签到 ,获得积分10
5分钟前
5分钟前
修辛完成签到 ,获得积分10
5分钟前
心灵美语兰完成签到 ,获得积分10
5分钟前
5分钟前
单薄的幼珊完成签到 ,获得积分10
5分钟前
单薄的幼珊关注了科研通微信公众号
5分钟前
彭于晏应助cici采纳,获得10
6分钟前
6分钟前
6分钟前
binbinbin发布了新的文献求助10
6分钟前
hq发布了新的文献求助10
6分钟前
binbinbin完成签到,获得积分10
6分钟前
科研通AI5应助hq采纳,获得10
6分钟前
7分钟前
sweets完成签到,获得积分10
7分钟前
7分钟前
adgcxvjj应助科研通管家采纳,获得10
7分钟前
花落无声完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4814010
求助须知:如何正确求助?哪些是违规求助? 4125799
关于积分的说明 12766276
捐赠科研通 3863601
什么是DOI,文献DOI怎么找? 2126486
邀请新用户注册赠送积分活动 1147853
关于科研通互助平台的介绍 1042422