Tuning Hydrogen-Bond Network within Stacked 2D Nanolayer for Enhanced Oxygen Evolution Reaction

材料科学 氧气 氢键 债券 化学物理 纳米技术 化学 业务 分子 有机化学 财务
作者
T. Utsunomiya,Qing Su,Asuka Morinaga,Yasuyuki Kondo,Yu Katayama,Yuki Yamada
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (58): 3901-3901
标识
DOI:10.1149/ma2024-02583901mtgabs
摘要

Introduction Water splitting is a key to producing hydrogen with renewable electricity. The reaction consists of two reactions: hydrogen evolution and oxygen evolution reaction (OER), and the sluggish reaction kinetics of OER limits the overall energy efficiency 1) . Although the OER activity was continuously improved, mainly by optimizing the binding ability between reactants and the catalysts, the current strategy is reaching its limits. Recently, it has been reported that the hydrogen bond network of water molecules around the catalyst surface influences OER activity, and Lewis acidic metal cations in electrolytes can be used to tune its structures 2) . However, the contribution of cations to the OER activity is not noticeably manifested since the cation existence ratio is orders of magnitude lower than that of water molecules. Here, we focused on layered manganese oxide (MnO 2 ) 3) , which can trap metal complexes, water molecules, and cations within its nanolayer, as an OER catalyst. We synthesized the MnO 2 catalysts having Ni 2+ complex (for OER active site) and non-catalytic Li + , K + , and Cs + (for tuning the hydrogen bond network of confined water) co-inserted into the nanolayer. The effect of the hydrogen bond network on the OER activity was clarified by utilizing the nanosized interlayer space of layered MnO 2 as a tunable electrochemical reaction field. Methods The layered MnO 2 was electrodeposited on an FTO substrate using a solution containing manganese sulfate (MnSO 4 ) and a guest cation (TBA + Cl - ). Subsequently, the electrodeposited samples were immersed in various ion exchange solutions to synthesize target catalysts (Ni, Ni-Li, Ni-K, Ni-Cs/MnO 2 ). X-ray diffraction (XRD) was used to estimate the interlayer distances between the crystal phases of samples. The electronic states of Ni active sites were evaluated by X-ray photoelectron spectroscopy (XPS). Linear sweep voltammetry (LSV) was performed using three-electrode cells in 0.1 M TBAOH at a scan rate of 10 mV s – 1 to evaluate the OER activity. Results and discussion The XRD patterns showed the equally spaced peaks for each sample, confirming the layered structure for all synthesized catalysts (Fig.1a). Furthermore, the calculated interlayer distances matched with the hydration radius of expected interlayer cations, suggesting the successful insertion of the target cations. Ni2p peaks from XPS spectra showed the same peak positions throughout the samples, indicating a negligible change in the electronic states of Ni (Fig. 1b). The OER activity changed markedly depending on the non-catalytic alkaline cations, and the OER activity was in the order of Cs + < K + < Li + (Fig.1c). The observed trend was opposite to the activity of Ni disk electrodes in alkaline-cation electrolytes (LiOH < KOH < CsOH) (Fig.1d). The results suggest that alkaline cations differently modulate the hydrogen-bond network in the bulk electrolyte and inside the nanosized interlayer space, thus leading to different OER activity. We will also discuss the correlation between the hydrogen-bond network structure around the Ni 2+ complex and OER activity by probing the behavior of confined water within the interlayer with operando surface-enhanced infrared spectroscopy (SEIRAS). Reference 1) Liu, X. Chem. Commun ., 52, 5546–5549 (2016). 2)M. Görlin, et al. Nat. Commun., 11, 6181 (2020). 3)K. Fujimoto, et al . J. Phys. Chem ., 122, 8406–8413 (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ycg发布了新的文献求助10
1秒前
汉堡包应助火羽白采纳,获得10
2秒前
2秒前
外星猫发布了新的文献求助30
2秒前
2秒前
愉快的老三完成签到,获得积分10
3秒前
3秒前
甜美早晨完成签到 ,获得积分10
3秒前
骞骞完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
共享精神应助王肄博采纳,获得10
4秒前
4秒前
pixxo发布了新的文献求助10
4秒前
Orange应助复杂的幻灵采纳,获得10
5秒前
HiK完成签到,获得积分10
5秒前
不配.应助机灵柚子采纳,获得20
7秒前
薛武发布了新的文献求助10
7秒前
fang发布了新的文献求助10
7秒前
令狐从霜完成签到,获得积分10
8秒前
8秒前
罗小学发布了新的文献求助10
9秒前
11秒前
11秒前
corazon发布了新的文献求助10
13秒前
13秒前
苦学僧完成签到,获得积分10
13秒前
hzy完成签到,获得积分20
14秒前
李健应助bhkwxdxy采纳,获得10
14秒前
臧梓任发布了新的文献求助10
15秒前
17秒前
王肄博发布了新的文献求助10
17秒前
18秒前
情怀应助摩登灰太狼采纳,获得10
18秒前
科研通AI6应助罗小学采纳,获得20
18秒前
我是老大应助跳跳虎采纳,获得10
19秒前
水不在深关注了科研通微信公众号
20秒前
21秒前
25秒前
外星猫完成签到,获得积分10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240837
求助须知:如何正确求助?哪些是违规求助? 3774460
关于积分的说明 11853523
捐赠科研通 3429621
什么是DOI,文献DOI怎么找? 1882489
邀请新用户注册赠送积分活动 934335
科研通“疑难数据库(出版商)”最低求助积分说明 840952