已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Whither bias goes, I will go: An integrative, systematic review of algorithmic bias mitigation.

选择偏差 计算机科学 选择(遗传算法) 数据科学 管理科学 心理学 人工智能 医学 病理 经济
作者
Louis Hickman,Christopher Huynh,Jessica Gass,Brandon M. Booth,Jason Kuruzovich,Louis Tay
出处
期刊:Journal of Applied Psychology [American Psychological Association]
被引量:4
标识
DOI:10.1037/apl0001255
摘要

Machine learning (ML) models are increasingly used for personnel assessment and selection (e.g., resume screeners, automatically scored interviews). However, concerns have been raised throughout society that ML assessments may be biased and perpetuate or exacerbate inequality. Although organizational researchers have begun investigating ML assessments from traditional psychometric and legal perspectives, there is a need to understand, clarify, and integrate fairness operationalizations and algorithmic bias mitigation methods from the computer science, data science, and organizational research literatures. We present a four-stage model of developing ML assessments and applying bias mitigation methods, including 1) generating the training data, 2) training the model, 3) testing the model, and 4) deploying the model. When introducing the four-stage model, we describe potential sources of bias and unfairness at each stage. Then, we systematically review definitions and operationalizations of algorithmic bias, legal requirements governing personnel selection from the United States and Europe, and research on algorithmic bias mitigation across multiple domains and integrate these findings into our framework. Our review provides insights for both research and practice by elucidating possible mechanisms of algorithmic bias while identifying which bias mitigation methods are legal and effective. This integrative framework also reveals gaps in the knowledge of algorithmic bias mitigation that should be addressed by future collaborative research between organizational researchers, computer scientists, and data scientists. We provide recommendations for developing and deploying ML assessments, as well as recommendations for future research into algorithmic bias and fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁大头发布了新的文献求助10
1秒前
希望天下0贩的0应助丁爽采纳,获得10
1秒前
馆长应助yi采纳,获得10
1秒前
可爱的坤完成签到,获得积分10
3秒前
wanqing完成签到,获得积分10
6秒前
科研通AI5应助小苏采纳,获得10
6秒前
8秒前
12秒前
6677发布了新的文献求助10
12秒前
14秒前
Steve完成签到,获得积分10
15秒前
科目三应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得30
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
YifanWang发布了新的文献求助10
18秒前
19秒前
Steve发布了新的文献求助30
21秒前
22秒前
dio小面包完成签到 ,获得积分10
22秒前
Medy发布了新的文献求助10
23秒前
25秒前
儒雅的夏山完成签到,获得积分10
26秒前
26秒前
27秒前
zlc完成签到,获得积分10
28秒前
馆长应助yi采纳,获得10
29秒前
杜志洪发布了新的文献求助20
30秒前
超帅妙竹发布了新的文献求助10
30秒前
火星上的山河完成签到 ,获得积分10
31秒前
狗头233发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
yajuan33发布了新的文献求助10
37秒前
Ava应助陈展峰采纳,获得10
37秒前
orixero应助杜志洪采纳,获得10
38秒前
超帅妙竹完成签到,获得积分20
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812927
求助须知:如何正确求助?哪些是违规求助? 4125346
关于积分的说明 12765246
捐赠科研通 3862413
什么是DOI,文献DOI怎么找? 2125999
邀请新用户注册赠送积分活动 1147509
关于科研通互助平台的介绍 1041357