清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic microgrid formation for resilient distribution systems considering large-scale deployment of mobile energy resources

微电网 软件部署 比例(比率) 分布式发电 计算机科学 环境科学 工程类 可再生能源 电气工程 地理 地图学 操作系统
作者
Wenlong Shi,Hao Liang,Matthias Bittner
出处
期刊:Applied Energy [Elsevier BV]
卷期号:362: 122978-122978
标识
DOI:10.1016/j.apenergy.2024.122978
摘要

Microgrids (MGs) are promising solutions to improve power distribution system (PDS) resilience against natural disasters. However, the existing MG formation approaches based on the linearized Distflow (LinDistflow) model always demand MG roots and their corresponding topologies. This can result in an increased number of variables and constraints in the optimization problem, and deteriorate their computational performance. To this end, an adaptive LinDistflow model is proposed based on the single commodity flow model in graph theory in this paper. Specifically, we show that active and reactive powers can be represented as commodities, which are sent from one node to each of its adjacent nodes in the graph. Then, the power flow and nodal voltage calculation based on the commodity flow only requires adjacent node information of the original topology rather than various MG topologies caused by the dynamic deployment of mobile energy resources (MERs). Furthermore, by incorporating the adaptive LinDistflow model as constraints, a dynamic MG formation approach is proposed for resilient load restoration considering large-scale MER deployment. The problem is formulated as a mixed-integer nonlinear programming problem (MINLP). A linearization technique is proposed based on the propositional logic constraints. It employs the propositional logic that partitions the solution space into two separated regions. Accordingly, the region that the solution lies in can be selected linearly. The effectiveness of the proposed approach is demonstrated based on the IEEE 37-Node, 123-Node and 8500-Node Test Feeders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助ppf采纳,获得10
刚刚
大白完成签到 ,获得积分10
5秒前
7秒前
songyongjian完成签到,获得积分10
13秒前
17秒前
songyongjian发布了新的文献求助10
23秒前
Lrcx完成签到 ,获得积分10
26秒前
D-L@rabbit完成签到 ,获得积分10
27秒前
雪雪完成签到 ,获得积分10
27秒前
violetlishu完成签到 ,获得积分10
31秒前
ppf完成签到,获得积分20
33秒前
一叶扁舟完成签到 ,获得积分10
34秒前
gengsumin完成签到,获得积分10
41秒前
lily完成签到 ,获得积分10
49秒前
wangwei完成签到 ,获得积分10
51秒前
李新光完成签到 ,获得积分10
53秒前
溪与芮行完成签到 ,获得积分10
57秒前
58秒前
幽默的南珍完成签到 ,获得积分10
1分钟前
lorentzh完成签到,获得积分10
1分钟前
wtzhang16完成签到 ,获得积分10
1分钟前
橘子海完成签到 ,获得积分10
1分钟前
周肥发布了新的文献求助10
1分钟前
崔宁宁完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
kkscanl完成签到 ,获得积分10
1分钟前
真真完成签到 ,获得积分10
1分钟前
1分钟前
天青色等烟雨完成签到 ,获得积分10
1分钟前
Acid完成签到 ,获得积分10
1分钟前
老刘完成签到 ,获得积分10
1分钟前
1分钟前
悠明夜月完成签到 ,获得积分10
2分钟前
周肥完成签到,获得积分20
2分钟前
我和你完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336769
关于积分的说明 10282111
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468