亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Prediction of the Lost Circulation Events at the Well Planning Stage

计算机科学 阶段(地层学) 循环(流体动力学) 人工智能 机器学习 工程类 地质学 航空航天工程 古生物学
作者
Valerian Guillot,Alexey Ruzhnikov,Mauricio Corona,Florian Karpfinger
标识
DOI:10.4043/34764-ms
摘要

Abstract Well construction process is often accomplished by multiple challenges, where lost circulation is one of the having most sifnificant impact. The downhole losses, partial or total, in many cases associated with karst, fractures, caverns or large voids, which cannot be identified at the well design stage with standard practices. The manuscript provides the detailed approach how the machine learning has been used to predict the loss circulation events at the planning stage. The novel approach is based on the 3 main pillars: data preparation, the machine learning itself and the model application. The data preparation includes some manual work, when the attributes of the offset wells shall be analyzed – daily reports (over 80 million sentences, in this specific case), including the losses depths; the trajectories, and the identification of lost circulation events on them; the microresistivity and caliper logs, recorded both across lost circulation zones and competent formations; and the seismic attributes, total 15 were picked. As a result, the 3D points with the attributes and labels for lost circulation events were created, where the Machine Leaning (ML) was applied. ML part includes the split of all the wells in 66/33 proportion, with study been performed in 66% of the wells, with further tune of the results. As the result the machine learning is applied to the seismic attributes and the trajectories to determine the risks of the lost circulation events. The model shows a low specificity in predicting the high probability of the lost circulation events, but a high specificity in predicting locations with a low probability of the lost circulation. Using the proposed approach, it is possible now to plan a well trajectory in such way, that probability of the losses are reduced by up to 95%. The proposed workflow can be incorporated in the entire well construction process from the start of a location preparation, to ensure the new trajectory (without losses) can reach the target zone. As well it helps at the planning stage to allocate the resources and material required to cure the expected losses or to execute the blind drilling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
科研通AI5应助ll采纳,获得10
13秒前
fheu关注了科研通微信公众号
23秒前
38秒前
ll发布了新的文献求助10
44秒前
51秒前
1分钟前
1分钟前
万能图书馆应助Shule采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
Shule发布了新的文献求助10
2分钟前
得失心的诅咒完成签到 ,获得积分10
2分钟前
Ava应助张翰林采纳,获得10
2分钟前
30发布了新的文献求助10
2分钟前
only完成签到 ,获得积分10
2分钟前
Shule完成签到,获得积分10
2分钟前
温不胜的破木吉他完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
张翰林发布了新的文献求助10
3分钟前
张翰林完成签到,获得积分10
3分钟前
张翰林关注了科研通微信公众号
3分钟前
3分钟前
4分钟前
国色不染尘完成签到,获得积分10
4分钟前
4分钟前
jqliu完成签到 ,获得积分10
4分钟前
4分钟前
hms发布了新的文献求助10
5分钟前
5分钟前
华仔应助andrele采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得30
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
汉堡包完成签到,获得积分10
7分钟前
张佳明完成签到 ,获得积分10
7分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613406
捐赠科研通 3121973
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928