Effect of Cr and Ni on mechanical response and microstructural evolution of nanocrystalline ferrite: A molecular dynamics study

材料科学 纳米晶材料 晶界 变形机理 位错 微观结构 材料的强化机理 铁氧体(磁铁) 冶金 分子动力学 固溶强化 流动应力 粒度 复合材料 纳米技术 计算化学 化学
作者
Weiwei Huang,Jinyuan Tang,Weihua Zhou,Jun Wen,Zhuan Li,Kaile Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:273: 109226-109226 被引量:10
标识
DOI:10.1016/j.ijmecsci.2024.109226
摘要

Microalloying plays a critical role in improving the mechanical properties of steel. To offer a better theoretical guide for experimental research at the atomic level, this paper investigated the synergistic mechanism of adding trace amounts of alloy Cr and Ni and the microstructure evolution of nanocrystalline ferrite during the mechanical response process. First-principles calculations were implemented to investigate electronic properties. Hybrid molecular dynamics and Monte Carlo simulations were employed to explore the deformation mechanism under uniaxial tension and scratching. Specifically, comprehensive differences between doped and pure nanocrystalline ferrites were explored regarding local stress-strain state, dislocation evolution, twin expansion, and grain boundary activity. The results show that Cr- and Ni-doped nanocrystalline ferrite has higher strength and better wear resistance. The potential mechanism is that the addition of Cr and Ni enhances the atomic bonding strength with Fe atoms, hinders the movement of dislocations caused by lattice distortion, and suppresses grain boundary slip and migration, thereby improving the resistance to plastic deformation and grain boundary stability. Theoretical calculations based on microstructure indicate that compared to solid solution strengthening, Ni-induced grain boundary strengthening plays a dominant role in improving yield strength. Under large deformation, the trend of mechanical response is reversed. The suppression of dislocation motion by Cr reduces the dislocation density and dislocation entanglement, resulting in flow stress and local scratch force being smaller than that of pure samples. However, the formation of more nanoscale twins and twin-dislocation interactions enhances strain-hardening ability during tensile. Finer nanostructured subgrains are formed under scratching. These results provide valuable insights into the understanding of the strengthening mechanism and plastic deformation mechanism of Cr-Ni system low alloy steel under dynamic loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小虫子爱学习完成签到,获得积分10
1秒前
wwww完成签到,获得积分10
1秒前
浮游应助小高采纳,获得10
1秒前
1秒前
芝诺完成签到,获得积分10
1秒前
2秒前
wuhshan完成签到,获得积分10
2秒前
2秒前
慕青应助机智的思山采纳,获得10
3秒前
jeffery111发布了新的文献求助10
3秒前
3秒前
大方泥猴桃完成签到,获得积分10
3秒前
肖岳发布了新的文献求助10
4秒前
羊and羊完成签到,获得积分10
4秒前
贝帅杰完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
英姑应助111ccc采纳,获得10
7秒前
喵喵发布了新的文献求助10
7秒前
打打应助从容宛亦采纳,获得10
7秒前
7秒前
7秒前
SSDmax发布了新的文献求助10
8秒前
8秒前
张哥源完成签到,获得积分10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
9秒前
传奇3应助Rosin采纳,获得10
9秒前
风乎舞雩应助科研通管家采纳,获得20
9秒前
桃tao完成签到,获得积分10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
赶紧大聪明完成签到,获得积分10
9秒前
所所应助科研通管家采纳,获得10
9秒前
薛wen晶完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
heli发布了新的文献求助10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
指导灰发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4839894
求助须知:如何正确求助?哪些是违规求助? 4142427
关于积分的说明 12824180
捐赠科研通 3887406
什么是DOI,文献DOI怎么找? 2137302
邀请新用户注册赠送积分活动 1157308
关于科研通互助平台的介绍 1057156