Fast Robust Point Cloud Registration Based on Compatibility Graph and Accelerated Guided Sampling

点云 离群值 计算机科学 点集注册 人工智能 采样(信号处理) 算法 计算机视觉 模式识别(心理学) 数据挖掘 点(几何) 数学 几何学 滤波器(信号处理)
作者
Chengjun Wang,Zheng Zhen,Bingting Zha,Haojie Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (15): 2789-2789 被引量:3
标识
DOI:10.3390/rs16152789
摘要

Point cloud registration is a crucial technique in photogrammetry, remote sensing, etc. A generalized 3D point cloud registration framework has been developed to estimate the optimal rigid transformation between two point clouds using 3D key point correspondences. However, challenges arise due to the uncertainty in 3D key point detection techniques and the similarity of local surface features. These factors often lead to feature descriptors establishing correspondences containing significant outliers. Current point cloud registration algorithms are typically hindered by these outliers, affecting both their efficiency and accuracy. In this paper, we propose a fast and robust point cloud registration method based on a compatibility graph and accelerated guided sampling. By constructing a compatible graph with correspondences, a minimum subset sampling method combining compatible edge sampling and compatible vertex sampling is proposed to reduce the influence of outliers on the estimation of the registration parameters. Additionally, an accelerated guided sampling strategy based on preference scores is presented, which effectively utilizes model parameters generated during the iterative process to guide the sampling toward inliers, thereby enhancing computational efficiency and the probability of estimating optimal parameters. Experiments are carried out on both synthetic and real-world data. The experimental results demonstrate that our proposed algorithm achieves a significant balance between registration accuracy and efficiency compared to state-of-the-art registration algorithms such as RANSIC and GROR. Even with up to 2000 initial correspondences and an outlier ratio of 99%, our algorithm achieves a minimum rotation error of 0.737° and a minimum translation error of 0.0201 m, completing the registration process within 1 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
岩松完成签到 ,获得积分10
1秒前
1秒前
1秒前
99发布了新的文献求助10
2秒前
嘿嘿发布了新的文献求助10
2秒前
有魅力问梅完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
所所应助王359采纳,获得10
3秒前
LIOLLO_0110完成签到,获得积分10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
月亮完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
7秒前
刘大强完成签到,获得积分10
8秒前
8秒前
liyantong发布了新的文献求助10
8秒前
8秒前
8秒前
飘逸的乘风完成签到,获得积分10
8秒前
大秦帝国完成签到,获得积分10
8秒前
ontheway发布了新的文献求助10
9秒前
9秒前
红油曲奇发布了新的文献求助10
9秒前
9秒前
安安发布了新的文献求助10
9秒前
Orange应助yuanshl1985采纳,获得10
9秒前
HYJ发布了新的文献求助10
10秒前
甜甜圈完成签到,获得积分10
10秒前
10秒前
丘比特应助YANG采纳,获得10
11秒前
得己发布了新的文献求助10
11秒前
ttt发布了新的文献求助10
11秒前
99完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648136
求助须知:如何正确求助?哪些是违规求助? 4775011
关于积分的说明 15042974
捐赠科研通 4807191
什么是DOI,文献DOI怎么找? 2570599
邀请新用户注册赠送积分活动 1527359
关于科研通互助平台的介绍 1486404