Research on tire appearance defect detection algorithm based on efficient multi-scale convolution

卷积(计算机科学) 比例(比率) 计算机科学 算法 材料科学 人工智能 物理 量子力学 人工神经网络
作者
Zhangang Gao,Zihao Yang,Mengchen Xu,Hualin Yang,Fang Deng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015009-015009
标识
DOI:10.1088/1361-6501/ad8469
摘要

Abstract Due to the large randomness of tire appearance defect size and the complex and diverse defect shapes, the existing target detection algorithm is prone to missing and misidentifying targets, the accuracy is limited, and the detection model is large, which is not conducive to deployment on embedded devices. In this paper, the efficient multi-scale convolution (EMC) mode is proposed, and the C2f-EMC module is designed on this basis, which improves the network structure of YOLOv8, improves the accuracy of tire appearance defect detection, and reduces the number of parameters in the model. EMC convolution first divides the input feature images into four parts on average and carries out multi-scale convolution with convolution cores of 1 × 1, 3 × 3, 5 × 5 and 7 × 7 sizes respectively. Then, the obtained results are stacked, and cross-channel feature fusion is realized by point-by-point convolution. After determining the network structure of C2f-EMC, the best improvement position of C2f-EMC module is determined through comparative experiments. Experiments show that after the above improvements, the parameter number of the model is reduced by 4.85%, the calculation amount by 2.82%, the model size by 4.44%, the recall rate by 2.8%, the mAP50 by 1.0%, the mAP50-95 by 1.3%, and the F1 by 2%. The defect detection task can be completed more accurately and the model size requirements of embedded devices can be better met.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu完成签到,获得积分10
刚刚
douKY应助妮儿采纳,获得10
刚刚
微笑牛排发布了新的文献求助30
1秒前
九儿完成签到 ,获得积分10
1秒前
Youtenter发布了新的文献求助10
2秒前
zero完成签到,获得积分10
3秒前
qxj完成签到 ,获得积分10
6秒前
huang关注了科研通微信公众号
6秒前
乐乐应助悦耳的傲薇采纳,获得10
7秒前
MchemG应助xzy998采纳,获得10
10秒前
Rachel完成签到,获得积分10
11秒前
在水一方应助lizhiqian2024采纳,获得10
12秒前
14秒前
15秒前
15秒前
16秒前
森海完成签到,获得积分10
17秒前
Orange应助靓丽的熠彤采纳,获得10
17秒前
masheng完成签到,获得积分10
18秒前
19秒前
完美芒果发布了新的文献求助10
19秒前
19秒前
21秒前
23秒前
希望天下0贩的0应助蓝草采纳,获得10
23秒前
汉堡包应助lin采纳,获得10
24秒前
传奇3应助Jenny采纳,获得10
25秒前
jenningseastera应助妮儿采纳,获得10
27秒前
xiaoqian发布了新的文献求助30
27秒前
许欢发布了新的文献求助10
28秒前
LZL完成签到 ,获得积分10
29秒前
qfby发布了新的文献求助10
30秒前
jia完成签到 ,获得积分10
30秒前
Akim应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
斯寜应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
HEIKU应助科研通管家采纳,获得10
31秒前
斯寜应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230587
捐赠科研通 3042204
什么是DOI,文献DOI怎么找? 1669890
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792