Cross‐Cohort Mixture Analysis: A Data Integration Approach With Applications on Gestational Age and DNA‐Methylation‐Derived Gestational Age Acceleration Metrics

统计 队列 胎龄 回归 人口学 计量经济学 怀孕 生物 数学 遗传学 社会学
作者
Elena Colicino,Roberto Ascari,Hachem Saddiki,Francheska M. Merced‐Nieves,Nicolò Foppa Pedretti,Kathi Huddleston,Robert O. Wright,Rosalind J. Wright
出处
期刊:Biometrical Journal [Wiley]
卷期号:66 (8) 被引量:2
标识
DOI:10.1002/bimj.202300270
摘要

ABSTRACT Data integration of multiple studies can provide enhanced exposure contrast and statistical power to examine associations between environmental exposure mixtures and health outcomes. Extant research has combined populations and identified an overall mixture–outcome association, without accounting for differences across studies. We extended the Bayesian Weighted Quantile Sum (BWQS) regression to a hierarchical framework to analyze mixtures across cohorts. The hierarchical BWQS (HBWQS) approach aggregates sample size of multiple cohorts to calculate an overall mixture index, thereby identifying the most harmful exposure(s) across cohorts; and provides cohort‐specific associations between the overall mixture index and the outcome. We showed results from 10 simulated scenarios including four mixture components in three, eight, and ten populations, and two real‐case examples on the association between prenatal metal mixture exposure—comprising arsenic, cadmium, and lead—and both gestational age and epigenetic‐derived gestational age acceleration metrics. Simulated scenarios showed good empirical coverage and little bias for all HBWQS‐estimated parameters. The Watanabe–Akaike information criterion showed a better average performance for the HBWQS regression than the BWQS across scenarios. HBWQS results incorporating cohorts within the national Environmental influences on Child Health Outcomes (ECHO) program from three different sites showed that the environmental mixture was negatively associated with gestational age in a single site. The HBWQS approach facilitates the combination of multiple cohorts and accounts for individual cohort differences in mixture analyses. HBWQS findings can be used to develop regulations, policies, and interventions regarding multiple co‐occurring environmental exposures and it will maximize the use of extant publicly available data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒迎夏完成签到,获得积分20
4秒前
gnr2000发布了新的文献求助10
5秒前
jzmulyl完成签到,获得积分10
6秒前
elsa622完成签到 ,获得积分10
8秒前
Li完成签到,获得积分10
9秒前
sunflower完成签到,获得积分0
13秒前
风信子deon01完成签到,获得积分10
19秒前
001完成签到,获得积分10
21秒前
火星上的雨柏完成签到,获得积分10
21秒前
Yx完成签到,获得积分10
26秒前
27秒前
畅快山兰完成签到 ,获得积分10
27秒前
嘟嘟雯完成签到 ,获得积分10
28秒前
木又完成签到 ,获得积分10
28秒前
李健的小迷弟应助wowser采纳,获得30
29秒前
你要学好完成签到 ,获得积分10
31秒前
32秒前
dejavu发布了新的文献求助10
34秒前
芊芊完成签到 ,获得积分10
34秒前
zwy完成签到 ,获得积分10
39秒前
奶油泡fu完成签到 ,获得积分10
39秒前
Beyond095完成签到 ,获得积分10
39秒前
uouuo完成签到 ,获得积分10
40秒前
40秒前
兴奋的若菱完成签到 ,获得积分10
42秒前
lilylian完成签到,获得积分10
42秒前
a1159545319发布了新的文献求助10
43秒前
saf0852完成签到,获得积分10
44秒前
fatcat完成签到,获得积分10
45秒前
Bronya完成签到 ,获得积分10
49秒前
gnr2000完成签到,获得积分10
50秒前
宗师算个瓢啊完成签到 ,获得积分10
51秒前
bkagyin应助Ye采纳,获得10
51秒前
余味应助科研通管家采纳,获得10
52秒前
Orange应助科研通管家采纳,获得10
52秒前
余味应助科研通管家采纳,获得10
52秒前
赖皮蛇完成签到 ,获得积分10
55秒前
愉快的犀牛完成签到 ,获得积分10
57秒前
冷傲的帽子完成签到 ,获得积分10
59秒前
dldldl完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784840
求助须知:如何正确求助?哪些是违规求助? 3330107
关于积分的说明 10244337
捐赠科研通 3045477
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557