Machine Learning Approaches for Predicting Company Bankruptcy: A Comparative Study

破产 破产预测 业务 人工智能 计算机科学 财务
作者
Umair Ali,Shah Abdul Fahad,Ammar Ali
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4961599/v1
摘要

Abstract The present study explores the utilization of machine learning classifiers for the purpose of forecasting firm bankruptcy. The dataset consisted of financial metrics and was used to evaluate six different classifiers which included; Support Vector Classifier, Logistic Regression, K-Nearest Neighbors, Naive Bayes, Decision Tree, and Random Forest. In terms of accuracy in the original data (96.77%) and scaled data (96.70%), Random Forest Classifier emerged as the best performing classifier. This research indicates that careful choice of a model is crucial and also implies that machine learning has a great potential in improving risk management and financial decision making. The implications of these result for various domains in finance suggest that hybrid models should be researched and explained in better detail by future work to further improve accuracy and transparency. Furthermore, the use of machine learning can raise predictive accuracy among financial institutions, which will lower risks thereby increasing overall performance that contributes to financial stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐乐乐乐乐应助Bin_Liu采纳,获得10
3秒前
7秒前
jeremy关注了科研通微信公众号
10秒前
哟哟哟发布了新的文献求助10
11秒前
14秒前
小猪完成签到,获得积分10
14秒前
干净幻梅完成签到,获得积分10
16秒前
科研小垃圾完成签到,获得积分10
19秒前
小麻薯发布了新的文献求助10
21秒前
折镜完成签到,获得积分10
21秒前
眼睛大安珊完成签到,获得积分10
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得30
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
25秒前
WHITE完成签到,获得积分10
27秒前
30秒前
深情安青应助haochi采纳,获得10
31秒前
xk完成签到,获得积分20
38秒前
lili完成签到,获得积分10
43秒前
无聊完成签到,获得积分10
44秒前
50秒前
张伟完成签到,获得积分10
53秒前
呆萌不正发布了新的文献求助10
56秒前
cdercder应助哈哈采纳,获得10
57秒前
风中书易完成签到,获得积分10
58秒前
所所应助Jro采纳,获得10
58秒前
59秒前
hoangphong完成签到,获得积分10
59秒前
内向的小凡完成签到,获得积分0
59秒前
Owen应助cloudss采纳,获得10
1分钟前
哟哟哟发布了新的文献求助10
1分钟前
上官若男应助小瓶子0327采纳,获得10
1分钟前
zhangruiii完成签到,获得积分10
1分钟前
发发发布了新的文献求助10
1分钟前
顾矜应助菠菜采纳,获得150
1分钟前
欣喜沛芹完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307