清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Domain Adaptation for EM Image Denoising with Invertible Networks

人工智能 图像去噪 计算机科学 可逆矩阵 图像(数学) 降噪 模式识别(心理学) 适应(眼睛) 计算机视觉 领域(数学分析) 域适应 数学 数学分析 物理 分类器(UML) 纯数学 光学
作者
Shiyu Deng,Yinda Chen,Wei Huang,Ruobing Zhang,Zhiwei Xiong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3431192
摘要

Electron microscopy (EM) image denoising is critical for visualization and subsequent analysis. Despite the remarkable achievements of deep learning-based non-blind denoising methods, their performance drops significantly when domain shifts exist between the training and testing data. To address this issue, unpaired blind denoising methods have been proposed. However, these methods heavily rely on image-to-image translation and neglect the inherent characteristics of EM images, limiting their overall denoising performance. In this paper, we propose the first unsupervised domain adaptive EM image denoising method, which is grounded in the observation that EM images from similar samples share common content characteristics. Specifically, we first disentangle the content representations and the noise components from noisy images and establish a shared domain-agnostic content space via domain alignment to bridge the synthetic images (source domain) and the real images (target domain). To ensure precise domain alignment, we further incorporate domain regularization by enforcing that: the pseudo-noisy images, reconstructed using both content representations and noise components, accurately capture the characteristics of the noisy images from which the noise components originate, all while maintaining semantic consistency with the noisy images from which the content representations originate. To guarantee lossless representation decomposition and image reconstruction, we introduce disentanglement-reconstruction invertible networks. Finally, the reconstructed pseudo-noisy images, paired with their corresponding clean counterparts, serve as valuable training data for the denoising network. Extensive experiments on synthetic and real EM datasets demonstrate the superiority of our method in terms of image restoration quality and downstream neuron segmentation accuracy. Our code is publicly available at https://github.com/sydeng99/DADn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助asdasd采纳,获得10
2秒前
无花果应助Demi_Ming采纳,获得10
4秒前
39秒前
Demi_Ming发布了新的文献求助10
44秒前
Akim应助陶醉的手套采纳,获得10
55秒前
宇文非笑完成签到 ,获得积分0
1分钟前
juan完成签到 ,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI5应助陶醉的手套采纳,获得10
2分钟前
2分钟前
万能图书馆应助张立人采纳,获得10
2分钟前
2分钟前
2分钟前
张立人发布了新的文献求助10
2分钟前
大英留子千早爱音完成签到,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得20
3分钟前
3分钟前
远远gby发布了新的文献求助10
3分钟前
luha完成签到,获得积分10
3分钟前
4分钟前
远远gby完成签到,获得积分20
4分钟前
4分钟前
慕青应助看文章的小余采纳,获得10
4分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
utgu完成签到,获得积分10
6分钟前
moumou完成签到,获得积分10
6分钟前
vict完成签到,获得积分20
6分钟前
7分钟前
姚华发布了新的文献求助10
7分钟前
贤惠的早晨完成签到 ,获得积分10
7分钟前
孤鸿影98完成签到 ,获得积分10
7分钟前
姚华完成签到,获得积分10
7分钟前
末世完成签到,获得积分10
7分钟前
夏目友人张应助Islet采纳,获得10
7分钟前
实力不允许完成签到 ,获得积分10
7分钟前
夏目友人张应助末世采纳,获得10
8分钟前
喜悦向日葵完成签到 ,获得积分10
9分钟前
Spring完成签到,获得积分10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341122
捐赠科研通 3065185
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600