Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

生物 大数据 数据科学 基因组选择 计算机科学 基因型 数据挖掘 遗传学 基因 单核苷酸多态性
作者
Yunbi Xu,Xingping Zhang,Huihui Li,Hongjian Zheng,Jianan Zhang,Michael Olsen,Rajeev K. Varshney,B. M. Prasanna,Qian Qian
出处
期刊:Molecular Plant [Elsevier BV]
卷期号:15 (11): 1664-1695 被引量:114
标识
DOI:10.1016/j.molp.2022.09.001
摘要

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土拨鼠发布了新的文献求助10
刚刚
1秒前
Nacies完成签到,获得积分10
2秒前
zyyyy发布了新的文献求助10
2秒前
Samuel发布了新的文献求助10
2秒前
臭臭完成签到,获得积分10
3秒前
3秒前
善学以致用应助ff567采纳,获得10
3秒前
Pothos完成签到,获得积分10
4秒前
zho发布了新的文献求助10
4秒前
陶醉的青雪完成签到,获得积分20
4秒前
科研通AI5应助科研采纳,获得10
4秒前
难过的亦云发布了新的文献求助100
5秒前
LaTeXer应助LLRO采纳,获得200
6秒前
duke发布了新的文献求助10
6秒前
8秒前
柴柴完成签到,获得积分10
9秒前
9秒前
helix发布了新的文献求助10
10秒前
10秒前
桐桐应助泥嚎采纳,获得10
10秒前
CipherSage应助QIAN采纳,获得10
10秒前
11秒前
大魁发布了新的文献求助10
11秒前
leo发布了新的文献求助10
11秒前
完美世界应助叶子采纳,获得10
11秒前
zzZ_完成签到 ,获得积分10
12秒前
汉堡包应助无心风云采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
隐形曼青应助糖葫芦采纳,获得10
14秒前
英姑应助LLL采纳,获得10
15秒前
恩雁发布了新的文献求助50
15秒前
城九寒发布了新的文献求助10
15秒前
15秒前
科研通AI5应助wise111采纳,获得10
15秒前
秦傲晴完成签到,获得积分10
16秒前
朝阳CAAS完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810891
求助须知:如何正确求助?哪些是违规求助? 3355340
关于积分的说明 10375473
捐赠科研通 3072137
什么是DOI,文献DOI怎么找? 1687237
邀请新用户注册赠送积分活动 811509
科研通“疑难数据库(出版商)”最低求助积分说明 766677