Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning

果园 树(集合论) 天蓬 多光谱图像 人工智能 树冠 计算机科学 支持向量机 遥感 激光雷达 产量(工程) 决策树 机器学习 模式识别(心理学) 数学 地理 园艺 数学分析 生物 考古 冶金 材料科学
作者
Riqiang Chen,Chengjian Zhang,Bo Xu,Yaohui Zhu,Fa Zhao,Shaoyu Han,Guijun Yang,Hao Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:201: 107275-107275 被引量:63
标识
DOI:10.1016/j.compag.2022.107275
摘要

As one of the world's most popular fruit, apple tree yield prediction before harvest plays an important role in optimizing orchard nutrition management, especially at the individual tree level. However, few studies focus on fruit-tree yield prediction with remote-sensing technology whereas most of them aim at field crops. Current fruits identifying and counting methods often fail to produce the expected result due to light and occlusion in complex orchard conditions. Since both the spectral and morphological characteristics of tree canopy can reflect the growth and development of fruit trees and are directly related to its potential yield. In this study, we develop a channel for automatic extraction of spectral and morphological features of apple trees using light detection and ranging (LiDAR) and multispectral imagery data from unmanned aerial vehicles. The contribution of spectral and morphological characteristics to the yield prediction of individual apple trees is discussed. With the combination of spectral and morphological features, an ensemble machine learning yield prediction model was developed by combining two widely used basic learners: support vector regression (SVR) and K-nearest neighbor (KNN). Then through extrapolating the ensemble model, the yield map was produced at the orchard level and individual tree level, respectively. The results show that the data processing channels developed in this study can accurately extract the morphological and spectral features of individual apple trees. Three features (Crown Volume 1, Ratio Vegetation Index, and CPA1) contribute most in apple tree yield prediction. The ensemble learning model outperforms all base learners with R2 = 0.813 for the validation and 0.758 for the test when using the selected three features. This study thus provides a practical example of predicting the yield of individual apple trees based on multi-source remote-sensing data and ensemble learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
斯文败类应助loey采纳,获得30
1秒前
1秒前
lmy完成签到,获得积分10
1秒前
小艾发布了新的文献求助10
2秒前
Hello应助mingyue11111111采纳,获得10
5秒前
十三发布了新的文献求助10
5秒前
6秒前
weirdo发布了新的文献求助10
7秒前
科研通AI5应助Xander采纳,获得10
8秒前
wanci应助blind采纳,获得10
8秒前
sora发布了新的文献求助10
10秒前
YingxueRen完成签到,获得积分10
10秒前
12秒前
liuguohua126发布了新的文献求助10
12秒前
小马甲应助潇大魏采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
FashionBoy应助郑琦敏钰采纳,获得10
14秒前
英俊的铭应助6666采纳,获得30
15秒前
王哈哈发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
DING发布了新的文献求助10
17秒前
苏夏完成签到 ,获得积分10
18秒前
19秒前
艳子发布了新的文献求助10
19秒前
流落尘世完成签到,获得积分10
19秒前
何YI完成签到,获得积分10
19秒前
20秒前
zyt发布了新的文献求助10
20秒前
凡帝完成签到,获得积分10
21秒前
22秒前
何YI发布了新的文献求助10
22秒前
Akim应助冷傲的蝴蝶采纳,获得30
22秒前
regent完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284808
求助须知:如何正确求助?哪些是违规求助? 3812236
关于积分的说明 11941497
捐赠科研通 3458793
什么是DOI,文献DOI怎么找? 1896885
邀请新用户注册赠送积分活动 945544
科研通“疑难数据库(出版商)”最低求助积分说明 849342