Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning

果园 树(集合论) 天蓬 多光谱图像 人工智能 树冠 计算机科学 支持向量机 遥感 激光雷达 产量(工程) 决策树 机器学习 模式识别(心理学) 数学 地理 园艺 数学分析 生物 考古 冶金 材料科学
作者
Riqiang Chen,Chengjian Zhang,Bo Xu,Yaohui Zhu,Fa Zhao,Shaoyu Han,Guijun Yang,Hao Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:201: 107275-107275 被引量:40
标识
DOI:10.1016/j.compag.2022.107275
摘要

As one of the world's most popular fruit, apple tree yield prediction before harvest plays an important role in optimizing orchard nutrition management, especially at the individual tree level. However, few studies focus on fruit-tree yield prediction with remote-sensing technology whereas most of them aim at field crops. Current fruits identifying and counting methods often fail to produce the expected result due to light and occlusion in complex orchard conditions. Since both the spectral and morphological characteristics of tree canopy can reflect the growth and development of fruit trees and are directly related to its potential yield. In this study, we develop a channel for automatic extraction of spectral and morphological features of apple trees using light detection and ranging (LiDAR) and multispectral imagery data from unmanned aerial vehicles. The contribution of spectral and morphological characteristics to the yield prediction of individual apple trees is discussed. With the combination of spectral and morphological features, an ensemble machine learning yield prediction model was developed by combining two widely used basic learners: support vector regression (SVR) and K-nearest neighbor (KNN). Then through extrapolating the ensemble model, the yield map was produced at the orchard level and individual tree level, respectively. The results show that the data processing channels developed in this study can accurately extract the morphological and spectral features of individual apple trees. Three features (Crown Volume 1, Ratio Vegetation Index, and CPA1) contribute most in apple tree yield prediction. The ensemble learning model outperforms all base learners with R2 = 0.813 for the validation and 0.758 for the test when using the selected three features. This study thus provides a practical example of predicting the yield of individual apple trees based on multi-source remote-sensing data and ensemble learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YZzzJ完成签到 ,获得积分10
8秒前
19秒前
神勇的天问完成签到 ,获得积分10
20秒前
kdc完成签到,获得积分10
21秒前
Johnson完成签到 ,获得积分10
22秒前
cq_2完成签到,获得积分0
29秒前
cdercder应助科研通管家采纳,获得10
38秒前
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
星海种花完成签到 ,获得积分10
40秒前
WYZ完成签到,获得积分10
46秒前
47秒前
畅快谷秋完成签到 ,获得积分10
49秒前
Ceci完成签到 ,获得积分10
52秒前
吉祥高趙完成签到 ,获得积分10
52秒前
ZZzz完成签到 ,获得积分10
57秒前
futianyu完成签到 ,获得积分0
58秒前
flyboy发布了新的文献求助10
1分钟前
舆上帝同行完成签到,获得积分10
1分钟前
1分钟前
zhangpeipei完成签到,获得积分10
1分钟前
Dr.Tang完成签到 ,获得积分10
1分钟前
怡心亭完成签到 ,获得积分0
1分钟前
wyw完成签到 ,获得积分10
1分钟前
lisa完成签到 ,获得积分10
1分钟前
安安完成签到 ,获得积分10
1分钟前
缓慢的甜瓜完成签到,获得积分10
1分钟前
1分钟前
MQ完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分10
1分钟前
海猫食堂完成签到,获得积分10
1分钟前
1分钟前
雪花完成签到 ,获得积分10
1分钟前
2分钟前
予秋发布了新的文献求助10
2分钟前
开拖拉机的医学僧完成签到 ,获得积分10
2分钟前
陈陈完成签到 ,获得积分10
2分钟前
2分钟前
momomi完成签到,获得积分10
2分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845620
求助须知:如何正确求助?哪些是违规求助? 3387857
关于积分的说明 10550711
捐赠科研通 3108463
什么是DOI,文献DOI怎么找? 1712863
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877