Optimal trajectory planning for industrial robots: Minimizing time, jerk, and energy consumption using LSTM for energy profile modeling

混蛋 能源消耗 弹道 机器人 能量(信号处理) 计算机科学 控制理论(社会学) 消费(社会学) 控制工程 人工智能 工程类 数学 控制(管理) 统计 物理 加速度 社会科学 经典力学 天文 社会学 电气工程
作者
Baghdadi Rezali,Benaoumeur Ibari,Mourad Hebali,Mohammed Berka,Menouer Bennaoum,Kamel Bouzgou,Redouane Ayad,Laredj Benchikh
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463251333481
摘要

Due to the continuous rise in energy costs for industrial robots (IRs), energy conservation has become one of the primary concerns in modern industry. This article presents a new, efficient approach for optimal trajectory planning of industrial robots in terms of time, jerk, and energy, while taking into consideration the kinematic constraints of the robot. A fifth-order B-spline interpolation method is adopted for curve fitting the trajectory in joint space to ensure smooth and continuous jerk in the robot’s articulation movements. The adjustable parameters of the trajectory are then optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to minimize traveling time, jerk, and energy consumption (EC) throughout the trajectory. Unlike time and jerk, establishing a precise mathematical relationship between energy consumption and the dynamics of a robot across different trajectories is challenging and not easily applicable. This study uses the deep learning technique long short-term memory (LSTM) to accurately uncover the quantitative relationships between trajectory operational parameters and energy consumption. The main advantage of this approach, compared to other proposed optimizations, is that it can predict and optimize the robot’s energy consumption before the real-time execution of the task, and it does not require setting a priori the overall execution time of the trajectory. The results on a six degree of freedom industrial robot demonstrate that the suggested approach reduces energy consumption by 49.87% and average absolute jerk by 60.56% compared to chord length distribution method with the same trajectory execution time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fjfzfisher发布了新的文献求助10
刚刚
Akim应助江峰采纳,获得10
3秒前
5秒前
8秒前
10秒前
17835152738完成签到,获得积分10
10秒前
司空豁应助qqq采纳,获得10
10秒前
完美世界应助Yu采纳,获得10
11秒前
我是老大应助武雨寒采纳,获得10
12秒前
PanZi发布了新的文献求助10
13秒前
14秒前
14秒前
二冲完成签到,获得积分10
15秒前
16秒前
Lanx完成签到,获得积分10
18秒前
JamesPei应助1234采纳,获得10
18秒前
费梦山发布了新的文献求助10
18秒前
感动芷卉发布了新的文献求助10
19秒前
七慕凉应助morena采纳,获得10
19秒前
星辰大海应助研友_LXO1x8采纳,获得10
19秒前
yang完成签到,获得积分10
20秒前
Yy发布了新的文献求助10
20秒前
20秒前
Wanderer完成签到 ,获得积分10
21秒前
hehehe85200发布了新的文献求助10
21秒前
江峰发布了新的文献求助10
21秒前
123发布了新的文献求助10
23秒前
北北北完成签到,获得积分10
23秒前
24秒前
芙芙完成签到,获得积分10
24秒前
小马甲应助曲奇饼采纳,获得10
26秒前
风中的棒棒糖完成签到,获得积分10
27秒前
28秒前
杨咩咩完成签到 ,获得积分10
28秒前
28秒前
小二郎应助qqq采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
高分求助中
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 400
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934225
求助须知:如何正确求助?哪些是违规求助? 3479537
关于积分的说明 11004944
捐赠科研通 3209370
什么是DOI,文献DOI怎么找? 1773624
邀请新用户注册赠送积分活动 860487
科研通“疑难数据库(出版商)”最低求助积分说明 797689