Enhanced Hydrogen-Ion Storage Performance of Molybdenum Trioxide Nanoribbons Doped by Oxygen Vacancies

材料科学 三氧化钼 兴奋剂 氢气储存 氧气 离子 三氧化物 三氧化钨 无机化学 纳米技术 光电子学 冶金 硫黄 有机化学 化学 合金
作者
Hanyang Zhang,Xianhui Li,N. Zhang,Dong Li,Jiaxin Cheng,Jian Yang,Pufan Deng,Yanling Yin,Weichang Zhou,Dongsheng Tang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.5c01903
摘要

Hydrogen ion has been extensively studied as a charge carrier in electrochemical energy storage devices due to its minimal ionic radius and abundant reserves. Among various candidate materials, molybdenum trioxide (MoO3) stands out as a promising electrode material owing to its excellent chemical stability and ultrahigh theoretical storage capacity. However, its practical application is hindered by a narrow potential window as a hydrogen-ion electrode and a low operating voltage caused by aqueous electrolyte decomposition. In this study, MoO3 nanoribbons with significant number of oxygen vacancies were synthesized via a simple hydrothermal method, which exhibit notable backward shift in the hydrogen evolution potential, three-proton intercalation/deintercalation process, and then a very noticeable enhancement in hydrogen-ion storage capacity during electrochemical testing in the aqueous electrolyte. It was also found that tungsten(W) doping in a specific amount can enrich the oxygen vacancies in MoO3 nanoribbons and then further enhance their hydrogen-ion storage performance. Remarkably, the W-doped MoO3 nanoribbons with a nominal molar ratio of 3% demonstrate an exceptional specific capacity of 390.8 mA h/g at a current density of 100 C (40 A/g). This study might highlight the significant impact of oxygen vacancy and tungsten(W) doping on the microstructures and electrochemical properties of MoO3 nanoribbons and provide valuable insights for the design and development of high-performance electrode materials for hydrogen-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oneday完成签到,获得积分10
刚刚
刚刚
1秒前
小蘑菇应助二二采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
wanci应助健壮的夕阳采纳,获得10
1秒前
Lip完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
豆豆可发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
科研通AI5应助zhengyuetong采纳,获得100
6秒前
852应助胡慧怡采纳,获得10
7秒前
可靠F发布了新的文献求助10
7秒前
7秒前
大意的硬币完成签到,获得积分10
7秒前
7秒前
577完成签到,获得积分10
8秒前
缥缈的机器猫完成签到,获得积分10
8秒前
余如龙发布了新的文献求助10
8秒前
王张李高发布了新的文献求助10
9秒前
直率海豚发布了新的文献求助10
9秒前
思源应助虚幻德地采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
jianni完成签到,获得积分10
13秒前
英俊的铭应助余如龙采纳,获得10
13秒前
13秒前
nnin完成签到 ,获得积分10
13秒前
13秒前
14秒前
隐形曼青应助王张李高采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663495
求助须知:如何正确求助?哪些是违规求助? 4045304
关于积分的说明 12513037
捐赠科研通 3737731
什么是DOI,文献DOI怎么找? 2064069
邀请新用户注册赠送积分活动 1093700
科研通“疑难数据库(出版商)”最低求助积分说明 974309