Measuring the severity of knee osteoarthritis with an Aberration-free fast line scanning Raman imaging system

化学 骨关节炎 拉曼光谱 直线(几何图形) 核磁共振 光学 病理 医学 物理 替代医学 几何学 数学
作者
Changwei Jiao,Jiajing Ye,Jiaqi Liao,Junxue Li,Junbo Liang,Sailing He
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1351: 343900-343900
标识
DOI:10.1016/j.aca.2025.343900
摘要

Osteoarthritis (OA) is a major cause of disability worldwide, with symptoms like joint pain, limited functionality, and decreased quality of life, potentially leading to deformity and irreversible damage. Chemical changes in joint tissues precede imaging alterations, making early diagnosis challenging for conventional methods like X-rays. Although Raman imaging provides detailed chemical information, it is time-consuming. This paper aims to achieve rapid osteoarthritis diagnosis and grading using a self-developed Raman imaging system combined with deep learning denoising and acceleration algorithms. Our self-developed aberration-corrected line-scanning confocal Raman imaging device acquires a line of Raman spectra (hundreds of points) per scan using a galvanometer or displacement stage, achieving spatial and spectral resolutions of 2 μm and 0.2 nm, respectively. Deep learning algorithms enhance the imaging speed by over 4 times through effective spectrum denoising and signal-to-noise ratio (SNR) improvement. By leveraging the denoising capabilities of deep learning, we are able to acquire high-quality Raman spectral data with a reduced integration time, thereby accelerating the imaging process. Experiments on the tibial plateau of osteoarthritis patients compared three excitation wavelengths (532, 671, and 785 nm), with 671 nm chosen for optimal SNR and minimal fluorescence. Machine learning algorithms achieved a 98 % accuracy in distinguishing articular from calcified cartilage and a 97 % accuracy in differentiating osteoarthritis grades I to IV. Our fast Raman imaging system, combining an aberration-corrected line-scanning confocal Raman imager with deep learning denoising, offers improved imaging speed and enhanced spectral and spatial resolutions. It enables rapid, label-free detection of osteoarthritis severity and can identify early compositional changes before clinical imaging, allowing precise grading and tailored treatment, thus advancing orthopedic diagnostics and improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助nenoaowu采纳,获得30
1秒前
2秒前
3秒前
爱学习的毛完成签到,获得积分10
3秒前
露露子完成签到,获得积分10
4秒前
7秒前
艺高人胆大鸡腿完成签到 ,获得积分10
7秒前
Paopao发布了新的文献求助10
9秒前
AA发布了新的文献求助10
9秒前
无花果应助yue采纳,获得10
9秒前
Jasper应助re采纳,获得10
9秒前
10秒前
牛头人完成签到,获得积分10
11秒前
深情安青应助niu采纳,获得10
11秒前
11秒前
Akim应助雪山飞龙采纳,获得10
11秒前
guozizi发布了新的文献求助80
12秒前
hjhhjh完成签到,获得积分10
13秒前
阿占完成签到,获得积分10
13秒前
万能图书馆应助tangying8642采纳,获得10
13秒前
华仔应助bluebiu采纳,获得10
14秒前
88就是發完成签到 ,获得积分10
14秒前
艺高人胆大鸡腿关注了科研通微信公众号
14秒前
遁去的一发布了新的文献求助10
16秒前
SciGPT应助HHH采纳,获得10
16秒前
Hello应助会飞的鱼采纳,获得10
17秒前
CodeCraft应助rpe采纳,获得10
18秒前
18秒前
20秒前
驴橘子窈完成签到,获得积分10
20秒前
21秒前
共享精神应助洁净艳一采纳,获得10
21秒前
驴橘子窈发布了新的文献求助10
24秒前
devin578632完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
niu发布了新的文献求助10
25秒前
25秒前
原电池完成签到,获得积分10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Translation and the Rediscovery of Rhetoric 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836985
求助须知:如何正确求助?哪些是违规求助? 3379213
关于积分的说明 10507996
捐赠科研通 3099037
什么是DOI,文献DOI怎么找? 1706692
邀请新用户注册赠送积分活动 821205
科研通“疑难数据库(出版商)”最低求助积分说明 772472