Measuring the severity of knee osteoarthritis with an Aberration-free fast line scanning Raman imaging system

化学 骨关节炎 拉曼光谱 直线(几何图形) 核磁共振 光学 病理 医学 物理 替代医学 几何学 数学
作者
Changwei Jiao,Jiajing Ye,Jiaqi Liao,Junxue Li,Junbo Liang,Sailing He
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1351: 343900-343900
标识
DOI:10.1016/j.aca.2025.343900
摘要

Osteoarthritis (OA) is a major cause of disability worldwide, with symptoms like joint pain, limited functionality, and decreased quality of life, potentially leading to deformity and irreversible damage. Chemical changes in joint tissues precede imaging alterations, making early diagnosis challenging for conventional methods like X-rays. Although Raman imaging provides detailed chemical information, it is time-consuming. This paper aims to achieve rapid osteoarthritis diagnosis and grading using a self-developed Raman imaging system combined with deep learning denoising and acceleration algorithms. Our self-developed aberration-corrected line-scanning confocal Raman imaging device acquires a line of Raman spectra (hundreds of points) per scan using a galvanometer or displacement stage, achieving spatial and spectral resolutions of 2 μm and 0.2 nm, respectively. Deep learning algorithms enhance the imaging speed by over 4 times through effective spectrum denoising and signal-to-noise ratio (SNR) improvement. By leveraging the denoising capabilities of deep learning, we are able to acquire high-quality Raman spectral data with a reduced integration time, thereby accelerating the imaging process. Experiments on the tibial plateau of osteoarthritis patients compared three excitation wavelengths (532, 671, and 785 nm), with 671 nm chosen for optimal SNR and minimal fluorescence. Machine learning algorithms achieved a 98 % accuracy in distinguishing articular from calcified cartilage and a 97 % accuracy in differentiating osteoarthritis grades I to IV. Our fast Raman imaging system, combining an aberration-corrected line-scanning confocal Raman imager with deep learning denoising, offers improved imaging speed and enhanced spectral and spatial resolutions. It enables rapid, label-free detection of osteoarthritis severity and can identify early compositional changes before clinical imaging, allowing precise grading and tailored treatment, thus advancing orthopedic diagnostics and improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kra发布了新的文献求助10
刚刚
慕青应助Thien采纳,获得10
刚刚
刚刚
hxl发布了新的文献求助10
刚刚
完美世界应助泯珉采纳,获得10
1秒前
友好听云发布了新的文献求助10
2秒前
wisper发布了新的文献求助10
2秒前
今后应助王木木采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
Molly0303完成签到,获得积分10
3秒前
维维完成签到,获得积分10
3秒前
花舞霓裳发布了新的文献求助10
3秒前
平淡水儿发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
37星河75发布了新的文献求助20
7秒前
负责秋天发布了新的文献求助10
7秒前
所所应助wisper采纳,获得10
7秒前
8秒前
思源应助qwe采纳,获得10
8秒前
无辜澜发布了新的文献求助10
8秒前
8秒前
8秒前
Kra完成签到,获得积分20
8秒前
南提发布了新的文献求助10
9秒前
10秒前
静心安逸发布了新的文献求助10
10秒前
Maestro_S应助1026918采纳,获得10
10秒前
万能图书馆应助1026918采纳,获得10
10秒前
mushanes完成签到 ,获得积分10
10秒前
11秒前
11秒前
今后应助研友_nPbeR8采纳,获得10
11秒前
脑洞疼应助wencc采纳,获得10
12秒前
12秒前
张一完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536