Current Technological Advances in Dysphagia Screening: Systematic Scoping Review (Preprint)

预印本 吞咽困难 系统回顾 医学 梅德林 计算机科学 政治学 万维网 外科 法学
作者
Duo Wai‐Chi Wong,J Wang,Sophia Ming-Yan Cheung,Derek Ka-Hei Lai,Armstrong Tat San Chiu,Dai Pu,James Chung‐Wai Cheung,Timothy Kwok
标识
DOI:10.2196/preprints.65551
摘要

BACKGROUND Dysphagia affects more than half of older adults with dementia and is associated with a 10-fold increase in mortality. The development of accessible, objective, and reliable screening tools is crucial for early detection and management. OBJECTIVE This systematic scoping review aimed to (1) examine the current state of the art in artificial intelligence (AI) and sensor-based technologies for dysphagia screening, (2) evaluate the performance of these AI-based screening tools, and (3) assess the methodological quality and rigor of studies on AI-based dysphagia screening tools. METHODS We conducted a systematic literature search across CINAHL, Embase, PubMed, and Web of Science from inception to July 4, 2024, following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework. In total, 2 independent researchers conducted the search, screening, and data extraction. Eligibility criteria included original studies using sensor-based instruments with AI to identify individuals with dysphagia or unsafe swallow events. We excluded studies on pediatric, infant, or postextubation dysphagia, as well as those using non–sensor-based assessments or diagnostic tools. We used a modified Quality Assessment of Diagnostic Accuracy Studies–2 tool to assess methodological quality, adding a “model” domain for AI-specific evaluation. Data were synthesized narratively. RESULTS This review included 24 studies involving 2979 participants (1717 with dysphagia and 1262 controls). In total, 75% (18/24) of the studies focused solely on per-individual classification rather than per–swallow event classification. Acoustic (13/24, 54%) and vibratory (9/24, 38%) signals were the primary modality sources. In total, 25% (6/24) of the studies used multimodal approaches, whereas 75% (18/24) used a single modality. Support vector machine was the most common AI model (15/24, 62%), with deep learning approaches emerging in recent years (3/24, 12%). Performance varied widely—accuracy ranged from 71.2% to 99%, area under the receiver operating characteristic curve ranged from 0.77 to 0.977, and sensitivity ranged from 63.6% to 100%. Multimodal systems generally outperformed unimodal systems. The methodological quality assessment revealed a risk of bias, particularly in patient selection (unclear in 18/24, 75% of the studies), index test (unclear in 23/24, 96% of the studies), and modeling (high risk in 13/24, 54% of the studies). Notably, no studies conducted external validation or domain adaptation testing, raising concerns about real-world applicability. CONCLUSIONS This review provides a comprehensive overview of technological advancements in AI and sensor-based dysphagia screening. While these developments show promise for continuous long-term tele-swallowing assessments, significant methodological limitations were identified. Future studies can explore how each modality can target specific anatomical regions and manifestations of dysphagia. This detailed understanding of how different modalities address various aspects of dysphagia can significantly benefit multimodal systems, enabling them to better handle the multifaceted nature of dysphagia conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
humble完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
研友_8DoPDZ完成签到,获得积分0
4秒前
苗条盼山发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
笑死活该发布了新的文献求助30
6秒前
上岸应助谨慎的寒松采纳,获得10
7秒前
桐桐应助谨慎的寒松采纳,获得10
7秒前
无花果应助谨慎的寒松采纳,获得50
7秒前
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
TT完成签到 ,获得积分10
8秒前
9秒前
9秒前
shawn完成签到 ,获得积分10
10秒前
无名子发布了新的文献求助10
10秒前
liam完成签到,获得积分10
10秒前
秋实发布了新的文献求助10
11秒前
Moonpie应助yan采纳,获得10
12秒前
Hello应助苗条盼山采纳,获得10
13秒前
一只小郭发布了新的文献求助10
13秒前
Twonej应助nihaolaojiu采纳,获得30
14秒前
宅了五百年完成签到,获得积分10
14秒前
15秒前
15秒前
自由归尘完成签到,获得积分10
16秒前
小匡完成签到 ,获得积分10
20秒前
yan完成签到,获得积分10
21秒前
23秒前
25秒前
25秒前
一只小郭完成签到,获得积分10
25秒前
汉堡包应助谨慎的寒松采纳,获得10
26秒前
烟花应助谨慎的寒松采纳,获得80
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737037
求助须知:如何正确求助?哪些是违规求助? 5370241
关于积分的说明 15334617
捐赠科研通 4880797
什么是DOI,文献DOI怎么找? 2622998
邀请新用户注册赠送积分活动 1571878
关于科研通互助平台的介绍 1528721