化学
电化学发光
生物传感器
DNA甲基化
纳米技术
DNA
计算生物学
甲基化
生物化学
检出限
色谱法
基因
基因表达
材料科学
生物
作者
Xu Cao,Yuan Chen,Qian Yu,Jie Wu,Huangxian Ju
标识
DOI:10.1021/acs.analchem.5c00516
摘要
This work proposes a highly sensitive, simple, and reliable electrochemiluminescence (ECL) DNA methylation biosensing platform by employing DNA-functionalized magnetic beads (DNA-MBs) for target capture and nanotag self-assembly aggregation for signal amplification. The target methylated DNA was first captured on DNA-MBs through base pairing recognition, and then its methylation sites were recognized by antibody-5mC (Ab-5mC). Afterward, a pair of antibodies functionalized [Ru(byp)3]2+-doped silica nanoparticles (Ab2-Ru@SiO2 and Ab3-Ru@SiO2) was layer-by-layer assembled on Ab-5mC for amplified signal transduction. The sensing beads could be transferred to screen-printed carbon electrodes (SPCEs) for ECL curve detection via photomultiplier tube or to gold-coated indium tin oxide (Au/ITO) arrays for high-throughput imaging detection. As the nanotag assembly layers increased from 1 to 3, the detection sensitivities of SPCE-based curve detection and Au/ITO-based imaging detection were enhanced 7-fold and 3-fold, achieving detection limits down to 0.8 pM and 0.9 fM, respectively. The nanotags showed good stability, with storage times of 300 days for Ru@SiO2 and 60 days for Ab-Ru@SiO2, respectively. This method is universal and could be applied to detect different methylated DNAs by using their corresponding DNA-MBs. The proposed ECL biosensing platform possessed advantages of high sensitivity, good diversity, and practicality, showing potential for high-throughput DNA methylation detection in clinical diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI