Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models

贝叶斯概率 贝叶斯优化 计算机科学 扩散 人工智能 物理 热力学
作者
Bingdong Li,Zixiang Di,Yongfan Lu,Hong Qian,Feng Wang,Peng Yang,Ke Tang,Aimin Zhou
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (25): 27063-27071
标识
DOI:10.1609/aaai.v39i25.34913
摘要

Multi-objective Bayesian optimization (MOBO) has shown promising performance on various expensive multi-objective optimization problems (EMOPs). However, effectively modeling complex distributions of the Pareto optimal solutions is difficult with limited function evaluations. Existing Pareto set learning algorithms may exhibit considerable instability in such expensive scenarios, leading to significant deviations between the obtained solution set and the Pareto set (PS). In this paper, we propose a novel Composite Diffusion Model based Pareto Set Learning algorithm (CDM-PSL) for expensive MOBO. CDM-PSL includes both unconditional and conditional diffusion model for generating high-quality samples efficiently. Besides, we introduce a weighting method based on information entropy to balance different objectives. This method is integrated with a guiding strategy to appropriately balancing different objectives during the optimization process. Experimental results on both synthetic and real-world problems demonstrates that CDM-PSL attains superior performance compared with state-of-the-art MOBO algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乂氼完成签到,获得积分10
1秒前
2秒前
2秒前
NexusExplorer应助海风吹采纳,获得10
3秒前
球状闪电完成签到,获得积分10
3秒前
DChen发布了新的文献求助10
3秒前
3秒前
4秒前
HJJHJH发布了新的文献求助10
4秒前
djf完成签到,获得积分10
4秒前
西米露完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
斯文败类应助小羊采纳,获得10
6秒前
6秒前
唐褚完成签到,获得积分10
6秒前
corazon发布了新的文献求助10
6秒前
6秒前
6秒前
刘雨凝发布了新的文献求助10
7秒前
AAA王总完成签到,获得积分10
7秒前
冷静的高烽完成签到,获得积分10
7秒前
陈麦子发布了新的文献求助10
8秒前
8秒前
平淡的秋寒完成签到,获得积分10
8秒前
8秒前
9秒前
暗暗搁浅发布了新的文献求助10
9秒前
诺诺发布了新的文献求助10
10秒前
CipherSage应助qwegsj采纳,获得10
10秒前
11秒前
善学以致用应助Krystal采纳,获得10
11秒前
12秒前
英吉利25发布了新的文献求助10
12秒前
12秒前
东方诩发布了新的文献求助10
12秒前
开心的年糕完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084160
求助须知:如何正确求助?哪些是违规求助? 4300949
关于积分的说明 13401291
捐赠科研通 4125208
什么是DOI,文献DOI怎么找? 2259361
邀请新用户注册赠送积分活动 1263549
关于科研通互助平台的介绍 1197607