A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery

合成孔径雷达 计算机科学 联营 遥感 人工智能 计算机视觉 特征(语言学) 目标检测 模式识别(心理学) 地质学 语言学 哲学
作者
Yongsheng Zhou,Hanchao Liu,Fei Ma,Zongxu Pan,Fan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:83
标识
DOI:10.1109/tgrs.2023.3264231
摘要

Ship detection from synthetic aperture radar (SAR) remote sensing images is essential for monitoring water traffic and marine safety. Numerous methods for ship detection have been developed; however, the detection of small ships presents unique challenges. SAR image characteristics, such as the sidelobe effect and blurred outline induced by the special imaging mechanism, as well as the small ship size, are the primary factors that lower the detection accuracy. This paper provides a sidelobe-aware small ship detection network for synthetic aperture radar imagery. First, considering the sidelobe effect and blurred outline, dual-pooling, i.e., average pooling and max pooling, was utilized to build a feature extraction module that lowered the effects of strong scattering points outside of the ship body and enhanced the ship body information. Second, as the bipartition process of the average pooling and maximum pooling caused some loss of original data information, different feature maps in the network were concatenated to construct a new network structure to compensate for the information lost and enrich the small ship features. Third, because the traditional loss function based on centroid distance and aspect ratio may result in the same loss function value for different prediction box sizes, a novel loss function based on the dual Euclidean distances of the corner point coordinates between the prediction box and the real box was proposed, which could accurately describe various overlapping box situations. Experiments using the Large-Scale SAR Ship Detection Dataset (LS-SSDD), SAR Ship Detection Dataset (SSDD), and AIR-SARShip dataset validated the efficacy and state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winniebaro发布了新的文献求助10
刚刚
无私白风发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
核桃发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
英姑应助秦始皇采纳,获得10
2秒前
GTY发布了新的文献求助10
3秒前
深情安青应助化学兔八哥采纳,获得10
3秒前
4秒前
隐形曼青应助毛思惠采纳,获得10
4秒前
4秒前
coin完成签到,获得积分10
4秒前
link发布了新的文献求助10
4秒前
L756561205完成签到,获得积分20
4秒前
4秒前
归尘发布了新的文献求助10
5秒前
菜鸟发布了新的文献求助10
5秒前
5秒前
姚依林发布了新的文献求助10
6秒前
6秒前
打打应助苏涵采纳,获得10
6秒前
公龟应助jason采纳,获得10
6秒前
英俊的铭应助Walter采纳,获得30
6秒前
叫什么都行完成签到 ,获得积分10
6秒前
哈哈哈完成签到,获得积分20
6秒前
小宁同学发布了新的文献求助10
7秒前
虫虫完成签到 ,获得积分10
7秒前
无问完成签到,获得积分10
7秒前
7秒前
7秒前
流觞曲水完成签到 ,获得积分10
8秒前
8秒前
8秒前
後知後孓完成签到,获得积分10
8秒前
9秒前
希望天下0贩的0应助Luxuehua采纳,获得10
9秒前
9秒前
酷波er应助zxp12373采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614191
求助须知:如何正确求助?哪些是违规求助? 4699280
关于积分的说明 14902179
捐赠科研通 4738786
什么是DOI,文献DOI怎么找? 2547547
邀请新用户注册赠送积分活动 1511285
关于科研通互助平台的介绍 1473666