已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Order Deep Recurrent Neural Network With Hybrid Layers for Modeling Dynamic Behavior of Nonlinear High-Frequency Circuits

过度拟合 计算机科学 电子线路 非线性系统 循环神经网络 人工神经网络 电子工程 深度学习 算法 人工智能 工程类 电气工程 量子力学 物理
作者
Fatemeh Charoosaei,Mostafa Noohi,Sayed Alireza Sadrossadat,Ali Mirvakili,Weicong Na,Feng Feng
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:70 (12): 5340-5358 被引量:15
标识
DOI:10.1109/tmtt.2022.3216864
摘要

In this article, a new technique for macromodeling of high-frequency circuits and components called high-order deep recurrent neural network (HODRNN) is proposed. This technique explores an alternative approach to learn RNN for time dependencies in a more efficient way resulting in more accurate model. HODRNN uses more memory units to track previous hidden states, all of which are returned to the hidden layers as feedback through various weight paths. Moreover, a new improved structure called Hybrid-HODRNN is proposed for further increasing the modeling accuracy of HODRNN. The proposed Hybrid-HODRNN uses hybrid layers with both single and high orders for taking advantage of HODRNN and also reducing the overfitting problem, which finally leads to a more accurate model. In addition, the proposed method requires less training signals compared to the conventional shallow and deep RNNs in order to create a model with similar accuracy. Also, the obtained models from the proposed method are considerably faster than the transistor-level models while having similar accuracy. By modeling three high-frequency circuits in this article, we conclude that the HODRNN and its hybrid structure offer the ability to create a better macromodel of high-frequency nonlinear circuits than the conventional RNNs, which verifies the superiority of the new macromodeling techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dream完成签到 ,获得积分10
3秒前
薛飞发布了新的文献求助10
3秒前
神唐1发布了新的文献求助10
4秒前
花生王子完成签到 ,获得积分10
4秒前
6666完成签到,获得积分20
6秒前
7秒前
H2O完成签到,获得积分10
8秒前
光亮如彤完成签到,获得积分10
9秒前
时尚半仙完成签到 ,获得积分10
10秒前
13秒前
小太阳完成签到,获得积分10
13秒前
乐乐应助Vitana采纳,获得10
15秒前
为你钟情完成签到 ,获得积分10
15秒前
vkey完成签到,获得积分10
17秒前
adkdad完成签到,获得积分10
18秒前
ooooodai完成签到,获得积分10
20秒前
20秒前
笑点低完成签到 ,获得积分10
21秒前
23秒前
23秒前
24秒前
斯文无敌完成签到,获得积分10
26秒前
Hello应助gcxny采纳,获得10
27秒前
小凯完成签到 ,获得积分10
28秒前
sc发布了新的文献求助10
29秒前
熙游完成签到 ,获得积分10
29秒前
AST灰烬发布了新的文献求助10
29秒前
31秒前
Coco应助科研通管家采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得30
33秒前
33秒前
科研通AI6应助科研通管家采纳,获得30
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642