Factorizer: A scalable interpretable approach to context modeling for medical image segmentation

人工智能 背景(考古学) 计算机科学 分割 图像分割 计算机视觉 图像(数学) 尺度空间分割 模式识别(心理学) 可扩展性 机器学习 地理 数据库 考古
作者
Pooya Ashtari,Diana M. Sima,Lieven De Lathauwer,Dominique Sappey‐Marinier,Frederik Maes,Sabine Van Huffel
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102706-102706 被引量:40
标识
DOI:10.1016/j.media.2022.102706
摘要

Convolutional Neural Networks (CNNs) with U-shaped architectures have dominated medical image segmentation, which is crucial for various clinical purposes. However, the inherent locality of convolution makes CNNs fail to fully exploit global context, essential for better recognition of some structures, e.g., brain lesions. Transformers have recently proven promising performance on vision tasks, including semantic segmentation, mainly due to their capability of modeling long-range dependencies. Nevertheless, the quadratic complexity of attention makes existing Transformer-based models use self-attention layers only after somehow reducing the image resolution, which limits the ability to capture global contexts present at higher resolutions. Therefore, this work introduces a family of models, dubbed Factorizer, which leverages the power of low-rank matrix factorization for constructing an end-to-end segmentation model. Specifically, we propose a linearly scalable approach to context modeling, formulating Nonnegative Matrix Factorization (NMF) as a differentiable layer integrated into a U-shaped architecture. The shifted window technique is also utilized in combination with NMF to effectively aggregate local information. Factorizers compete favorably with CNNs and Transformers in terms of accuracy, scalability, and interpretability, achieving state-of-the-art results on the BraTS dataset for brain tumor segmentation and ISLES'22 dataset for stroke lesion segmentation. Highly meaningful NMF components give an additional interpretability advantage to Factorizers over CNNs and Transformers. Moreover, our ablation studies reveal a distinctive feature of Factorizers that enables a significant speed-up in inference for a trained Factorizer without any extra steps and without sacrificing much accuracy. The code and models are publicly available at https://github.com/pashtari/factorizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助花照林采纳,获得10
刚刚
火的信仰完成签到 ,获得积分10
刚刚
深情安青应助北岭雪兮采纳,获得10
刚刚
可爱的函函应助gs采纳,获得10
1秒前
cangmingzi发布了新的文献求助10
1秒前
1秒前
1bxx发布了新的文献求助10
1秒前
lal发布了新的文献求助10
1秒前
帅哥吴克完成签到,获得积分10
1秒前
王小怂发布了新的文献求助10
1秒前
嘉嘉驳回了烟花应助
1秒前
2秒前
宁静致远完成签到,获得积分10
2秒前
3秒前
3秒前
Gabriel发布了新的文献求助10
3秒前
Jasper应助Aspringin采纳,获得10
3秒前
4秒前
4秒前
呼啸37126发布了新的文献求助10
5秒前
Lxx发布了新的文献求助10
5秒前
李健应助123采纳,获得30
5秒前
6秒前
徐徐完成签到,获得积分10
6秒前
6秒前
科研通AI6应助邱仇天采纳,获得10
6秒前
CodeCraft应助邱仇天采纳,获得10
7秒前
guohh发布了新的文献求助10
7秒前
Echo完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945