Factorizer: A scalable interpretable approach to context modeling for medical image segmentation

人工智能 背景(考古学) 计算机科学 分割 图像分割 计算机视觉 图像(数学) 尺度空间分割 模式识别(心理学) 可扩展性 机器学习 地理 数据库 考古
作者
Pooya Ashtari,Diana M. Sima,Lieven De Lathauwer,Dominique Sappey‐Marinier,Frederik Maes,Sabine Van Huffel
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102706-102706 被引量:40
标识
DOI:10.1016/j.media.2022.102706
摘要

Convolutional Neural Networks (CNNs) with U-shaped architectures have dominated medical image segmentation, which is crucial for various clinical purposes. However, the inherent locality of convolution makes CNNs fail to fully exploit global context, essential for better recognition of some structures, e.g., brain lesions. Transformers have recently proven promising performance on vision tasks, including semantic segmentation, mainly due to their capability of modeling long-range dependencies. Nevertheless, the quadratic complexity of attention makes existing Transformer-based models use self-attention layers only after somehow reducing the image resolution, which limits the ability to capture global contexts present at higher resolutions. Therefore, this work introduces a family of models, dubbed Factorizer, which leverages the power of low-rank matrix factorization for constructing an end-to-end segmentation model. Specifically, we propose a linearly scalable approach to context modeling, formulating Nonnegative Matrix Factorization (NMF) as a differentiable layer integrated into a U-shaped architecture. The shifted window technique is also utilized in combination with NMF to effectively aggregate local information. Factorizers compete favorably with CNNs and Transformers in terms of accuracy, scalability, and interpretability, achieving state-of-the-art results on the BraTS dataset for brain tumor segmentation and ISLES'22 dataset for stroke lesion segmentation. Highly meaningful NMF components give an additional interpretability advantage to Factorizers over CNNs and Transformers. Moreover, our ablation studies reveal a distinctive feature of Factorizers that enables a significant speed-up in inference for a trained Factorizer without any extra steps and without sacrificing much accuracy. The code and models are publicly available at https://github.com/pashtari/factorizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小雪完成签到 ,获得积分10
3秒前
3秒前
明13完成签到 ,获得积分10
3秒前
甜甜完成签到 ,获得积分10
3秒前
figure完成签到 ,获得积分10
4秒前
酷炫的安雁完成签到 ,获得积分10
5秒前
LIYI完成签到 ,获得积分10
5秒前
SPARK应助周一采纳,获得10
6秒前
p454q完成签到 ,获得积分10
9秒前
郭嘉仪发布了新的文献求助10
10秒前
10秒前
12秒前
金毛上将完成签到 ,获得积分10
13秒前
daizi0104完成签到,获得积分10
16秒前
chen完成签到,获得积分10
16秒前
充电宝应助郭嘉仪采纳,获得10
16秒前
17秒前
daizi0104发布了新的文献求助10
19秒前
阿杜杜发布了新的文献求助80
20秒前
烟花应助chen采纳,获得10
21秒前
24秒前
177ycd发布了新的文献求助30
25秒前
25秒前
月儿完成签到,获得积分10
27秒前
12345完成签到 ,获得积分10
30秒前
yushanriqing发布了新的文献求助10
30秒前
书雪发布了新的文献求助10
31秒前
阿杜杜完成签到,获得积分10
32秒前
35秒前
35秒前
清爽代芹完成签到 ,获得积分10
36秒前
不爱被人抱的小咪宝关注了科研通微信公众号
39秒前
GJG发布了新的文献求助10
39秒前
CipherSage应助魔幻的鸭子采纳,获得10
40秒前
43秒前
44秒前
177ycd完成签到,获得积分10
46秒前
科研通AI6.2应助闫辰龙采纳,获得10
47秒前
49秒前
49秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847258
求助须知:如何正确求助?哪些是违规求助? 6223459
关于积分的说明 15619635
捐赠科研通 4963863
什么是DOI,文献DOI怎么找? 2676235
邀请新用户注册赠送积分活动 1620867
关于科研通互助平台的介绍 1576714