Network pharmacology and fingerprint for the integrated analysis of mechanism, identification and prediction in Panax notoginseng

三七 指纹(计算) 化学 偏最小二乘回归 皂甙 人工智能 高效液相色谱法 计算生物学 线性判别分析 色谱法 模式识别(心理学) 机器学习 计算机科学 替代医学 病理 生物 医学
作者
Chunlu Liu,Furong Xu,Zhi‐Tian Zuo,Yuanzhong Wang
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:34 (7): 772-787 被引量:4
标识
DOI:10.1002/pca.3195
摘要

Abstract Introduction Panax notoginseng (Burkill) F. H. Chen ex C. H. Chow, is a well‐known herb with multitudinous efficacy. In this study, a series of overall analyses on the action mechanism, component content, origin identification, and content prediction of P. notoginseng are conducted. Objectives The purpose was to analyse the mechanism of pharmacological efficacy, differences between contents and groups of P. notoginseng from different origins, and to identify the origin and predict the content. Materials and methods The P. notoginseng samples from four different origins were used for analysis by the database, network pharmacology (Q‐marker) and fingerprint analysis [high‐performance liquid chromatography (HPLC), attenuated total reflectance Fourier‐transform infrared (ATR‐FTIR) and near‐infrared (NIR)] combined with data fusion strategy (low‐ and feature‐level). Results Four saponins were identified as Q‐markers, and exerted pharmacological effects on signalling pathways through 24 core targets. The qualitative and quantitative analysis of HPLC showed that there were differences among groups and different origins. Therefore, considering the need to treat diseases, combined with network database and network pharmacology, the suitable producing areas were determined through the mechanism of action and the required saponin content. The low‐level data fusion successfully identified the origin and predicted the content of P. notoginseng from different origins. The accuracy rate of each evaluation index of the partial least squares discriminant analysis (PLS‐DA) model was 1, and the t‐SNE (t‐distributed stochastic neighbor embedding) visualisation results were good. The coefficient of determination ( R 2 ) of the partial least squares regression (PLSR) model ranged from 0.9235–0.9996, and the root mean square error of cross‐validation (RMSECV) and root mean square error of prediction (RMSEP) range is 0.301–1.519. Conclusion This study was designed to provide a sufficient theoretical basis for the quality control of P. notoginseng .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
栎木枝完成签到 ,获得积分10
2秒前
尹尹尹发布了新的文献求助10
2秒前
3秒前
Aries完成签到 ,获得积分10
5秒前
小赵完成签到,获得积分10
5秒前
JrPaleo101应助畅快芝麻采纳,获得10
6秒前
Cindy发布了新的文献求助10
6秒前
温暖大米完成签到 ,获得积分10
7秒前
8秒前
8秒前
小杨完成签到 ,获得积分10
10秒前
yk完成签到 ,获得积分10
11秒前
做梦完成签到,获得积分10
12秒前
12秒前
小赵发布了新的文献求助10
12秒前
陆又柔完成签到,获得积分10
14秒前
0031发布了新的文献求助10
15秒前
Cindy完成签到,获得积分10
15秒前
NexusExplorer应助积极访冬采纳,获得10
16秒前
困困困困完成签到,获得积分10
18秒前
脑洞疼应助冷山采纳,获得20
18秒前
20秒前
20秒前
Unbelievable完成签到,获得积分10
20秒前
东方三问完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
maopf发布了新的文献求助10
26秒前
chestnut灬完成签到 ,获得积分10
27秒前
28秒前
隐形曼青应助旧辞采纳,获得10
28秒前
一啊鸭完成签到,获得积分10
29秒前
小许发布了新的文献求助30
29秒前
做梦发布了新的文献求助20
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462