SRCANet: Stacked Residual Coordinate Attention Network for Infrared Ship Detection

计算机科学 残余物 人工智能 特征(语言学) 帧(网络) 模式识别(心理学) 卷积神经网络 特征提取 计算机视觉 卷积(计算机科学) 分割 像素 人工神经网络 算法 电信 哲学 语言学
作者
Peng Wu,Honghe Huang,Hanxiang Qian,Shaojing Su,Bei Sun,Zhen Zuo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:24
标识
DOI:10.1109/tgrs.2022.3218563
摘要

The inability of conventional algorithms to detect infrared (IR) ship targets in complex scenes led to the development of detection methods based on convolutional neural networks (CNNs). In this study, we propose a CNN-based stacked residual coordinate attention network (SRCANet) for detecting IR ship targets. Three-directional stacked interaction modules and a full-scale skip connection feature fusion scheme are introduced. The proposed network maintains and integrates sufficient contextual information of IR ship targets and obtains clear target boundary information. A cascaded residual coordinate attention module (CRCAM) is designed as the basic node in the SRCANet. Additionally, a residual coordinate attention module (RCAM) is introduced, which combines a two-dimensional convolution layer with batch normalisation and rectified linear unit (CBR), a coordination attention module, and a residual connection. The RCAM enhances the input feature map and improves the representability of objects of interest. The CRCAM comprises several cascading RCAMs that deepen the feature extraction layers. Furthermore, because there is no publicly available IR ship target dataset for segmentation, pixel-level annotations are performed on a set of IR ship target images and released as a single-frame IR ship detection (SISD) dataset. Extensive experiments were conducted on the SISD dataset and the widely used single-frame IR small target dataset to demonstrate the superiority of the proposed method. The results indicate that the SRCANet outperforms the state-of-the-art models, and it is more robust when target texture information is lacking. The SISD dataset is available at https://github.com/echo-sky/SISD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助nhh采纳,获得10
刚刚
橘子橙发布了新的文献求助10
刚刚
顾矜应助MADAO采纳,获得10
1秒前
打打应助平常金针菇采纳,获得10
2秒前
才染完成签到 ,获得积分10
3秒前
3秒前
俭朴发布了新的文献求助10
4秒前
yishufanhua完成签到,获得积分10
5秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
yishufanhua发布了新的文献求助10
8秒前
小菜鸡完成签到,获得积分10
8秒前
情怀应助俭朴采纳,获得10
9秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
nhh发布了新的文献求助10
12秒前
666完成签到,获得积分10
13秒前
潇洒完成签到,获得积分10
15秒前
16秒前
16秒前
666发布了新的文献求助10
16秒前
搜集达人应助行7采纳,获得30
17秒前
传奇3应助hutu的小朱采纳,获得10
17秒前
田様应助呼呼兔采纳,获得10
17秒前
Verritis发布了新的文献求助10
17秒前
20秒前
zzz完成签到,获得积分10
22秒前
666发布了新的文献求助10
22秒前
23秒前
charint应助Verritis采纳,获得20
24秒前
wanci应助Verritis采纳,获得10
24秒前
bobinson完成签到,获得积分10
25秒前
爆米花应助79采纳,获得10
25秒前
蕾蕾完成签到,获得积分10
25秒前
26秒前
碧蓝青梦发布了新的文献求助10
27秒前
Jack123完成签到,获得积分20
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5804113
求助须知:如何正确求助?哪些是违规求助? 5840200
关于积分的说明 15511818
捐赠科研通 4929493
什么是DOI,文献DOI怎么找? 2653992
邀请新用户注册赠送积分活动 1600932
关于科研通互助平台的介绍 1555795