Real-Time Identification of Natural Gas Pipeline Leakage Apertures Based on Lightweight Residual Convolutional Neural Network

卷积神经网络 稳健性(进化) 残余物 特征提取 计算机科学 人工智能 管道运输 泄漏(经济) 人工神经网络 分类器(UML) 电子工程 模式识别(心理学) 实时计算 工程类 算法 基因 宏观经济学 环境工程 经济 生物化学 化学
作者
Xiufang Wang,Yuan Liu,Chunlei Jiang,Yueming Li,Hongbo Bi
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (24): 24112-24120 被引量:5
标识
DOI:10.1109/jsen.2022.3217529
摘要

Deep-learning techniques have been widely used in pipeline leakage aperture identification. However, most are designed and implemented for offline data, with problems such as large parameters, high memory consumption, and poor noise immunity. To solve the problem, this article presents a lightweight residual convolutional neural network (L-Resnet) applied to a real-time detection platform to achieve real-time identification of pipeline leakage apertures. First, based on the depth separable technique, two different separable residual modules are constructed to realize the feature extraction of signals; then, a more efficient activation function is applied to the high-dimensional space to enhance the nonlinear capability of the model; after that, a lightweight attention mechanism is used to weight the features to distinguish the importance of different features; finally, the classification results are obtained by a classifier. The real-time detection platform consists of Jetson Nano, the signal acquisition module, and the processing circuit. The results indicated that the method could accurately identify the pipeline leakage apertures in real time. Moreover, the number of parameters is only 14.71 kb, and the model has good computing efficiency and robustness compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz完成签到,获得积分10
刚刚
不安的夜柳完成签到,获得积分10
刚刚
Orange应助如意草丛采纳,获得10
2秒前
疯狂的石头完成签到,获得积分10
3秒前
科研通AI2S应助viclcn采纳,获得10
4秒前
lou1219完成签到,获得积分10
5秒前
谷歌完成签到,获得积分10
6秒前
欣欣一人发布了新的文献求助10
6秒前
melone完成签到,获得积分10
7秒前
无限的柚子完成签到,获得积分10
9秒前
听闻墨笙完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
默默傻姑完成签到,获得积分10
13秒前
14秒前
如意草丛发布了新的文献求助10
16秒前
17秒前
科研助手6应助张梦阳采纳,获得10
17秒前
子车傲之完成签到,获得积分0
18秒前
丰富紫寒发布了新的文献求助10
18秒前
科研助手6应助富强民主采纳,获得10
18秒前
Akim应助不摇头的向日葵采纳,获得10
18秒前
20秒前
21秒前
21秒前
wutong发布了新的文献求助10
22秒前
25秒前
wd完成签到 ,获得积分10
26秒前
英姑应助陌尘采纳,获得10
26秒前
27秒前
27秒前
kskdss发布了新的文献求助20
28秒前
nice糊涂慧完成签到,获得积分10
29秒前
29秒前
31秒前
思源应助南笛采纳,获得10
31秒前
wqsnlyq发布了新的文献求助10
32秒前
33秒前
惊蛰vae发布了新的文献求助10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799386
求助须知:如何正确求助?哪些是违规求助? 3344983
关于积分的说明 10322805
捐赠科研通 3061457
什么是DOI,文献DOI怎么找? 1680341
邀请新用户注册赠送积分活动 807036
科研通“疑难数据库(出版商)”最低求助积分说明 763462