亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MHADTI: predicting drug–target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms

计算机科学 异构网络 嵌入 人工智能 特征(语言学) 机器学习 图嵌入 图形 任务(项目管理) 特征学习 相似性(几何) 数据挖掘 理论计算机科学 图像(数学) 无线网络 电信 哲学 经济 管理 无线 语言学
作者
Zhen Tian,Xiangyu Peng,Haichuan Fang,Wenjie Zhang,Qigen Dai,Yangdong Ye
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:3
标识
DOI:10.1093/bib/bbac434
摘要

Abstract Motivation Discovering the drug–target interactions (DTIs) is a crucial step in drug development such as the identification of drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions. Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially, heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. Results In this study, we develop a novel method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential Drug–Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their multisource information. Combined with the known DTI network, three drug–target heterogeneous information networks (HINs) with different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has advantages in discovering DTIs. Availability and implementation https://github.com/pxystudy/MHADTI
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guan发布了新的文献求助10
5秒前
好耶完成签到,获得积分10
8秒前
直率芮完成签到 ,获得积分10
18秒前
慕青应助zzh采纳,获得10
29秒前
脑洞疼应助小橙子采纳,获得10
45秒前
HUANWANG发布了新的文献求助10
49秒前
1分钟前
1分钟前
顾矜应助悦耳的老三采纳,获得10
1分钟前
1分钟前
容布丁发布了新的文献求助10
1分钟前
小橙子发布了新的文献求助10
1分钟前
qiuqiutantan发布了新的文献求助10
1分钟前
1分钟前
zzh完成签到,获得积分10
1分钟前
共享精神应助qiuqiutantan采纳,获得10
1分钟前
zzh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
超级无敌万能小金毛完成签到,获得积分10
1分钟前
2分钟前
qiuqiutantan发布了新的文献求助10
2分钟前
2分钟前
wanci应助羊肉串的悲伤采纳,获得30
2分钟前
pokikiii发布了新的文献求助10
2分钟前
CipherSage应助qiuqiutantan采纳,获得10
2分钟前
pokikiii完成签到,获得积分10
2分钟前
英姑应助紫翼采纳,获得30
2分钟前
小小的玛卡吧卡完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
oleskarabach完成签到,获得积分20
3分钟前
檸123456完成签到,获得积分10
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
科研通AI2S应助天真的雁露采纳,获得10
4分钟前
打打应助HUANWANG采纳,获得10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10359989
捐赠科研通 3068705
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033