神经形态工程学
材料科学
可穿戴计算机
深度学习
人工智能
计算机科学
可穿戴技术
编码
刮擦
人工神经网络
纤维
领域(数学)
电容
光子学
纳米技术
机器人学
管道(软件)
解码方法
墨水池
电子工程
人在回路中
透视图(图形)
职位(财务)
RGB颜色模型
作者
Xin Chen,Jiechun Zhou,Jinrong Huang,Jia-Hui Liu,Lan-Yu Nie,Yutian Zhu
标识
DOI:10.1002/adfm.202524652
摘要
Abstract Next‐generation human‐machine interaction demands neuromorphic input pathways that can seamlessly encode human intent with spatial precision, flexibility, and artificial intelligence (AI) compatibility. Conventional tactile systems often rely on multi‐electrode matrices for localization, resulting in complex wiring, crosstalk, and limited textile integration. Here, a neuromorphic multifunctional sensing single‐fiber (MSSF) fabricated via melt‐extrusion 3D printing of a thermoplastic polyurethane/ionic liquid ionogel is presented that can achieve continuous touch position decoding with only terminal electrodes. A folded‐parallel configuration modulates the distributed electric field along the fiber, allowing contact‐induced capacitance variations to be mathematically mapped to location with millimeter‐level resolution. Moreover, MSSF additionally enables high‐sensitivity strain and temperature sensing. Coupled with deep neural networks, the system achieves 100% recognition accuracy in touch intent and gestures. MSSF forms an integrated perception‐transmission‐recognition‐feedback loop within a scalable, textile‐compatible architecture, offering a transformative platform for embodied, intelligent, and spatially aware human‐machine interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI