材料科学
钙钛矿(结构)
相界
纳米团簇
微波食品加热
各向异性
吸收(声学)
电荷密度
凝聚态物理
格子(音乐)
化学物理
相(物质)
工作(物理)
后钙钛矿
带隙
相变
密度泛函理论
晶格常数
极地的
光电子学
纳米技术
吸收光谱法
电荷(物理)
作者
Kai Yao,Lixin Song,Xiang Zhang,Lixin Li,Fei Pan,Yang Yang,Jingfan Liang,Jingli Wang,Bin Yuan,Wei Lu,Kai Yao,Lixin Song,Xiang Zhang,Lixin Li,Fei Pan,Yang Yang,Jingfan Liang,Jingli Wang,Bin Yuan,Wei Lu
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2025-12-05
卷期号:11 (49)
标识
DOI:10.1126/sciadv.aea0362
摘要
Precise atomic-level control over interfacial charge density and lattice distortions remains a critical challenge across electromagnetism, optoelectronics, and catalysis. Here, we introduce a high-entropy strategy that leverages local compositional disorder to synergistically manipulate charge density distribution and lattice strain at anisotropic morphotropic phase boundary (MPB) interfaces. Experimental and computational studies reveal that high-entropy effect stabilizes multiphase polar nanoclusters within high-entropy perovskite oxides (HEPOs). This unique structural feature drives efficient charge density redistribution, substantially enhancing MPB interfacial polarization. We showcase this approach in electromagnetism, where MPB interfacial engineering effectively transforms perovskite oxides from negligible to high-performance microwave absorption capability in the low-frequency range. It provides complete absorption coverage of the 5G n79 band and an unprecedented absorption efficiency of 0.71 GHz/mm, considerably surpassing state-of-the-art perovskite-based low-frequency absorbers. This work markedly underscores the feasibility of perovskite for effective low-frequency absorption in next-generation communication technologies while also highlighting the broad potential of our MPB interfacial engineering strategy in catalysis, photonics, and energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI