Multi-modal deep learning of functional and structural neuroimaging and genomic data to predict mental illness

情态动词 计算机科学 人工智能 深度学习 神经影像学 机器学习 精神疾病 神经功能成像 数据科学 认知科学 自然语言处理 神经科学 心理学 精神科 心理健康 化学 高分子化学
作者
Md Abdur Rahaman,Jiayu Chen,Zening Fu,Noah Lewis,Armin Iraji,Vince D. Calhoun
标识
DOI:10.1109/embc46164.2021.9630693
摘要

Neuropsychiatric disorders such as schizophrenia are very heterogeneous in nature and typically diagnosed using self-reported symptoms. This makes it difficult to pose a confident prediction on the cases and does not provide insight into the underlying neural and biological mechanisms of these disorders. Combining neuroimaging and genomic data with a multi-modal 'predictome' paves the way for biologically informed markers and may improve prediction reliability. With that, we develop a multi-modal deep learning framework by fusing data from different modalities to capture the interaction between the latent features and evaluate their complementary information in characterizing schizophrenia. Our deep model uses structural MRI, functional MRI, and genome-wide polymorphism data to perform the classification task. It includes a multi-layer feed-forward network, an encoder, and a long short-term memory (LSTM) unit with attention to learn the latent features and adopt a joint training scheme capturing synergies between the modalities. The hybrid network also uses different regularizers for addressing the inherent overfitting and modality-specific bias in the multi-modal setup. Next, we run the network through a saliency model to analyze the learned features. Integrating modalities enhances the performance of the classifier, and our framework acquired 88% (P < 0.0001) accuracy on a dataset of 437 subjects. The trimodal accuracy is comparable to the state-of-the-art performance on a data collection of this size and outperforms the unimodal and bimodal baselines we compared. Model introspection was used to expose the salient neural features and genes/biological pathways associated with schizophrenia. To our best knowledge, this is the first approach that fuses genomic information with structural and functional MRI biomarkers for predicting schizophrenia. We believe this type of modality blending can better explain the disorder's dynamics by adding cross-modal prospects.Clinical Relevance- This study combinedly learns imaging and genomic features for the classification of schizophrenia. The data fusion scheme extracts modality interactions, and the saliency experiments report multiple functional and structural networks closely connected to the disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与月同行完成签到,获得积分10
1秒前
xhh完成签到 ,获得积分10
1秒前
青好发布了新的文献求助10
1秒前
jayliu完成签到,获得积分10
2秒前
ww完成签到,获得积分10
2秒前
2秒前
威武的凡桃完成签到,获得积分10
2秒前
3秒前
lzp完成签到 ,获得积分10
3秒前
科目三应助花鳥院夕月采纳,获得10
3秒前
大模型应助南航打球采纳,获得10
4秒前
wzz完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI5应助Cx330采纳,获得10
5秒前
九湖夷上完成签到,获得积分10
6秒前
6秒前
Jason完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
积极热狗完成签到,获得积分10
7秒前
Billie完成签到,获得积分10
7秒前
shawn_89完成签到,获得积分10
7秒前
zhanghan完成签到,获得积分10
7秒前
qingfeng完成签到,获得积分10
7秒前
7秒前
letitiazeng完成签到,获得积分10
7秒前
我就是我完成签到,获得积分10
7秒前
EKo完成签到,获得积分10
8秒前
shutup发布了新的文献求助10
8秒前
善良友安完成签到,获得积分10
9秒前
zhouzhou完成签到,获得积分10
9秒前
遮宁完成签到,获得积分10
9秒前
沉梦昂志_hzy完成签到,获得积分0
9秒前
Jason发布了新的文献求助10
9秒前
桐桐应助典雅的俊驰采纳,获得10
9秒前
LIANG发布了新的文献求助10
10秒前
激情的水壶完成签到,获得积分10
10秒前
小麦子儿发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642