Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review

渗透 纳滤 海水淡化 反渗透 化学 膜转运 生化工程 膜技术 纳米技术 材料科学 工程类 生物化学
作者
Idit Shefer,Kian P. Lopez,Anthony P. Straub,Razi Epsztein
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (12): 7467-7483 被引量:65
标识
DOI:10.1021/acs.est.2c00912
摘要

Membrane technologies using reverse osmosis (RO) and nanofiltration (NF) have been widely implemented in water purification and desalination processes. Separation between species at the molecular level is achievable in RO and NF membranes due to a complex and poorly understood combination of transport mechanisms that have attracted the attention of researchers within and beyond the membrane community for many years. Minimizing existing knowledge gaps in transport through these membranes can improve the sustainability of current water-treatment processes and expand the use of RO and NF membranes to other applications that require high selectivity between species. Since its establishment in 1949, and with growing popularity in recent years, Eyring's transition-state theory (TST) for transmembrane permeation has been applied in numerous studies to mechanistically explore molecular transport in membranes including RO and NF. In this review, we critically assess TST applied to transmembrane permeation in salt-rejecting membranes, focusing on mechanistic insights into transport under confinement that can be gained from this framework and the key limitations associated with the method. We first demonstrate and discuss the limited ability of the commonly used solution-diffusion model to mechanistically explain transport and selectivity trends observed in RO and NF membranes. Next, we review important milestones in the development of TST, introduce its underlying principles and equations, and establish the connection to transmembrane permeation with a focus on molecular-level enthalpic and entropic barriers that govern water and solute transport under confinement. We then critically review the application of TST to explore transport in RO and NF membranes, analyzing trends in measured enthalpic and entropic barriers and synthesizing new data to highlight important phenomena associated with the temperature-dependent measurement of the activation parameters. We also discuss major limitations of the experimental application of TST and propose specific solutions to minimize the uncertainties surrounding the current approach. We conclude with identifying future research needs to enhance the implementation and maximize the benefit of TST application to transmembrane permeation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助阿妤采纳,获得10
1秒前
平常听枫发布了新的文献求助10
1秒前
会思考的尾巴完成签到,获得积分10
1秒前
wanci应助Nowind采纳,获得10
2秒前
CHUER发布了新的文献求助10
2秒前
蓝色花生豆完成签到,获得积分10
3秒前
3秒前
Syh关注了科研通微信公众号
4秒前
5秒前
5秒前
6秒前
李j1完成签到,获得积分10
7秒前
zhang发布了新的文献求助10
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
xiaojinyu完成签到,获得积分10
10秒前
10秒前
changping应助南浔采纳,获得10
10秒前
y1j完成签到 ,获得积分10
10秒前
10秒前
CHUER完成签到,获得积分10
14秒前
xiaojinyu发布了新的文献求助10
15秒前
Lucas应助机智凝海采纳,获得30
16秒前
FF完成签到,获得积分10
16秒前
FashionBoy应助瑞雪不是雪采纳,获得10
18秒前
XuChaogang完成签到 ,获得积分10
18秒前
孤独的根号三完成签到 ,获得积分10
19秒前
19秒前
无聊的小懒虫完成签到 ,获得积分10
20秒前
布鲁爱思完成签到,获得积分10
25秒前
26秒前
31秒前
32秒前
思源应助lemon 1118采纳,获得30
32秒前
32秒前
wanci应助竺七采纳,获得10
35秒前
小蘑菇应助超级亿先采纳,获得10
36秒前
xm发布了新的文献求助10
36秒前
NexusExplorer应助yy采纳,获得10
37秒前
Syh关注了科研通微信公众号
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113