清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure

微观结构 电池(电) 计算机科学 维数之咒 编码器 降维 人工智能 材料科学 模式识别(心理学) 功率(物理) 物理 冶金 操作系统 量子力学
作者
Mona Faraji Niri,Jimiama Mafeni Mase,James Marco
出处
期刊:Energies [MDPI AG]
卷期号:15 (12): 4489-4489 被引量:15
标识
DOI:10.3390/en15124489
摘要

Li-ion batteries play a critical role in the transition to a net-zero future. The discovery of new materials and the design of novel microstructures for battery electrodes is necessary for the acceleration of this transition. The battery electrode microstructure can potentially reveal the cells’ electrochemical characteristics in great detail. However, revealing this relation is very challenging due to the high dimensionality of the problem and the large number of microstructure features. In fact, it cannot be achieved via the traditional trial-and-error approaches, which are associated with significant cost, time, and resource waste. In search for a systematic microstructure analysis and design method, this paper aims at quantifying the Li-ion battery electrode structural characteristics via deep learning models. Deliberately, here, a methodology and framework are developed to reveal the hidden microstructure characteristics via 2D and 3D images through dimensionality reduction. The framework is based on an auto-encoder decoder for microstructure reconstruction and feature extraction. Unlike most of the existing studies that focus on a limited number of features extracted from images, this study concentrates directly on the images and has the potential to define the number of features to be extracted. The proposed methodology and model are computationally effective and have been tested on a real open-source dataset where the results show the efficiency of reconstruction and feature extraction based on the training and validation mean squared errors between 0.068 and 0.111 and from 0.071 to 0.110, respectively. This study is believed to guide Li-ion battery scientists and manufacturers in the design and production of next generation Li-ion cells in a systematic way by correlating the extracted features at the microstructure level and the cell’s electrochemical characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灶灶完成签到 ,获得积分10
3秒前
蝎子莱莱xth完成签到,获得积分10
8秒前
氢锂钠钾铷铯钫完成签到,获得积分10
14秒前
Square完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
华杰发布了新的文献求助10
33秒前
37秒前
李健应助渡己。采纳,获得10
38秒前
1分钟前
渡己。完成签到,获得积分10
1分钟前
yys10l完成签到,获得积分10
1分钟前
yys完成签到,获得积分10
1分钟前
渡己。发布了新的文献求助10
1分钟前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
1分钟前
minnie完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
热心树叶应助挣钱养刺猬采纳,获得30
2分钟前
爱思考的小笨笨完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
yipmyonphu应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
思源应助niko采纳,获得10
2分钟前
田様应助niko采纳,获得10
2分钟前
NexusExplorer应助niko采纳,获得10
2分钟前
汉堡包应助niko采纳,获得10
2分钟前
Orange应助niko采纳,获得10
2分钟前
完美世界应助niko采纳,获得10
2分钟前
斯文败类应助niko采纳,获得10
2分钟前
爆米花应助niko采纳,获得10
2分钟前
彭于晏应助niko采纳,获得10
2分钟前
小二郎应助niko采纳,获得10
2分钟前
JamesPei应助niko采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534416
求助须知:如何正确求助?哪些是违规求助? 4622404
关于积分的说明 14582630
捐赠科研通 4562632
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022