How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda

强化学习 马尔可夫决策过程 计算机科学 人工智能 机器学习 文件夹 多样性(控制论) 术语 领域(数学) 深度学习 大数据 财务 马尔可夫过程 数据挖掘 经济 数学 统计 语言学 哲学 纯数学
作者
Vinay Singh,Shiuann-Shuoh Chen,Minal Singhania,Brijesh Nanavati,Arpan Kumar Kar,Agam Gupta
出处
期刊:International journal of information management data insights [Elsevier BV]
卷期号:2 (2): 100094-100094 被引量:105
标识
DOI:10.1016/j.jjimei.2022.100094
摘要

Data availability and accessibility have brought in unseen changes in the finance systems and new theoretical and computational challenges. For example, in contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that rely heavily on model assumptions, new developments from reinforcement learning (RL) can make full use of a large amount of financial data with fewer model assumptions and improve decisions in complex economic environments. This paper reviews the developments and use of Deep Learning(DL), RL, and Deep Reinforcement Learning (DRL)methods in information-based decision-making in financial industries. Therefore, it is necessary to understand the variety of learning methods, related terminology, and their applicability in the financial field. First, we introduce Markov decision processes, followed by Various algorithms focusing on value and policy-based methods that do not require any model assumptions. Next, connections are made with neural networks to extend the framework to encompass deep RL algorithms. Finally, the paper concludes by discussing the application of these RL and DRL algorithms in various decision-making problems in finance, including optimal execution, portfolio optimization, option pricing, hedging, and market-making. The survey results indicate that RL and DRL can provide better performance and higher efficiency than traditional algorithms while facing real economic problems in risk parameters and ever-increasing uncertainties. Moreover, it offers academics and practitioners insight and direction on the state-of-the-art application of deep learning models in finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助lllll采纳,获得10
刚刚
1秒前
caohai完成签到,获得积分20
1秒前
1秒前
1秒前
xh完成签到,获得积分10
2秒前
2秒前
3秒前
乐于助人大好人完成签到 ,获得积分10
3秒前
3秒前
Rick完成签到,获得积分10
3秒前
4秒前
NexusExplorer应助大山采纳,获得10
4秒前
思源应助wangx采纳,获得10
5秒前
恒星七纪发布了新的文献求助10
5秒前
柒月发布了新的文献求助10
5秒前
5秒前
5秒前
传奇3应助痴痴的噜采纳,获得10
5秒前
味道完成签到,获得积分10
5秒前
领导范儿应助Liu采纳,获得10
6秒前
最牛的kangkang完成签到,获得积分10
6秒前
兔兔完成签到,获得积分10
6秒前
6秒前
852应助明天肯定学习采纳,获得10
7秒前
0美团外卖0完成签到,获得积分10
7秒前
鸿鹄在天涯完成签到,获得积分10
7秒前
范先生发布了新的文献求助20
7秒前
8秒前
大知闲闲完成签到,获得积分10
8秒前
Calvin发布了新的文献求助30
8秒前
9秒前
崔哈哈完成签到,获得积分20
9秒前
恒星七纪完成签到,获得积分10
9秒前
瓶里岑发布了新的文献求助10
9秒前
10秒前
10秒前
zzzlk发布了新的文献求助10
10秒前
10秒前
CodeCraft应助典雅归尘采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798