已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognition and statistical analysis of coastal marine aquacultural cages based on R3Det single-stage detector: A case study of Fujian Province, China

水产养殖 环境科学 垂钓 阶段(地层学) 萃取(化学) 渔业 笼子 遥感 地理 地质学 数学 生物 组合数学 古生物学 化学 色谱法
作者
Yujie Ma,Xiaoyu Qu,Dejun Feng,Peng Zhang,Hengda Huang,Ziliang Zhang,Fukun Gui
出处
期刊:Ocean & Coastal Management [Elsevier BV]
卷期号:225: 106244-106244 被引量:4
标识
DOI:10.1016/j.ocecoaman.2022.106244
摘要

Fujian Province, located in the southeastern coast of China, has a highly developed coastal marine net cage aquaculture industry. The scale and density of marine aquaculture, especially net cages aquaculture, in China are increasing, which has seriously affected coastal and nearshore environments. Thus, methods for accurately obtaining the area and density of aquaculture net cages hold great significance. Because of the scattered distribution of net cage aquaculture areas, it is difficult to obtain an accurate net cage aquaculture area with traditional remote-sensing extraction methods. Therefore, this paper proposes a method for accurately identifying of the area of aquaculture net cages by combining R3Det single-stage detector and fishnet segmentation technology. A constructed sensing net cage dataset was used for model training and a fishing net segmentation technology was used to segment the remote-sensing image into R3Det testable image. The experimental results showed that the extraction accuracy of this method for round and square net cages was 92.65% and 98.06%, respectively, and the extraction accuracy of the actual net cage culture area was 97.24%. We concluded that the total area of net cage aquaculture in Fujian Province in 2019–2020 was 4363.58 ha, mainly in square net cages. The area of aquaculture was greater in the northern and southern parts of the province and less in the middle. The density of aquaculture was high in the south and low in the north. Compared with traditional remote-sensing extraction methods and neural networks, this solution reduced the impact of similar features on the classification target, realized the application of high-precision, large-area remote-sensing images on the R3Det single-stage detector, and improved the recognition accuracy and the robustness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eason小川发布了新的文献求助10
1秒前
ssx发布了新的文献求助10
1秒前
库里强发布了新的文献求助10
6秒前
斯文败类应助如梦采纳,获得10
7秒前
落寞臻完成签到,获得积分10
9秒前
LiuRuizhe发布了新的文献求助10
13秒前
chiyudoubao完成签到 ,获得积分10
14秒前
如梦完成签到,获得积分10
14秒前
丹丹完成签到 ,获得积分10
14秒前
谦让的青亦完成签到,获得积分10
15秒前
852应助烟火还是永恒采纳,获得10
19秒前
nx发布了新的文献求助50
20秒前
21秒前
彭于晏应助搞怪的醉波采纳,获得10
22秒前
羊羊驳回了情怀应助
23秒前
24秒前
molicha完成签到,获得积分10
25秒前
mingjiang发布了新的文献求助10
25秒前
28秒前
nx完成签到,获得积分10
29秒前
毅诚菌完成签到 ,获得积分10
30秒前
迷人世开完成签到,获得积分0
32秒前
Adhsksa发布了新的文献求助10
33秒前
34秒前
pathway完成签到 ,获得积分10
36秒前
orixero应助Eason小川采纳,获得10
36秒前
ab完成签到,获得积分10
37秒前
40秒前
DE2022发布了新的文献求助10
42秒前
SYLH应助阿牛奶采纳,获得10
42秒前
万能图书馆应助graham1101采纳,获得10
43秒前
yy2023发布了新的文献求助10
46秒前
飞龙在天完成签到,获得积分10
47秒前
51秒前
51秒前
54秒前
Charlie完成签到,获得积分10
56秒前
graham1101发布了新的文献求助10
56秒前
56秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833637
求助须知:如何正确求助?哪些是违规求助? 3376134
关于积分的说明 10491700
捐赠科研通 3095630
什么是DOI,文献DOI怎么找? 1704502
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775