Determining Predictors of Weight Loss in a Behavioral Intervention: A Case Study in the Use of Lasso Regression

减肥 回归 线性回归 回归分析 医学 干预(咨询) Lasso(编程语言) 统计 精神科 肥胖 内科学 数学 计算机科学 万维网
作者
Carly Lupton‐Smith,Elizabeth A. Stuart,Emma E. McGinty,Arlene Dalcin,Gerald J. Jerome,Nae‐Yuh Wang,Gail L. Daumit
出处
期刊:Frontiers in Psychiatry [Frontiers Media]
卷期号:12 被引量:2
标识
DOI:10.3389/fpsyt.2021.707707
摘要

Objective This study investigates predictors of weight loss among individuals with serious mental illness participating in an 18-month behavioral weight loss intervention, using Lasso regression to select the most powerful predictors. Methods Data were analyzed from the intervention group of the ACHIEVE trial, an 18-month behavioral weight loss intervention in adults with serious mental illness. Lasso regression was employed to identify predictors of at least five-pound weight loss across the intervention time span. Once predictors were identified, classification trees were created to show examples of how to classify participants into having likely outcomes based on characteristics at baseline and during the intervention. Results The analyzed sample contained 137 participants. Seventy-one (51.8%) individuals had a net weight loss of at least five pounds from baseline to 18 months. The Lasso regression selected weight loss from baseline to 6 months as a primary predictor of at least five pound 18-month weight loss, with a standardized coefficient of 0.51 (95% CI: −0.37, 1.40). Three other variables were also selected in the regression but added minimal predictive ability. Conclusions The analyses in this paper demonstrate the importance of tracking weight loss incrementally during an intervention as an indicator for overall weight loss, as well as the challenges in predicting long-term weight loss with other variables commonly available in clinical trials. The methods used in this paper also exemplify how to effectively analyze a clinical trial dataset containing many variables and identify factors related to desired outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助凡人采纳,获得10
1秒前
香蕉觅云应助Suchen136采纳,获得10
2秒前
大模型应助张又蓝采纳,获得10
4秒前
惊奇先生1完成签到,获得积分10
4秒前
6秒前
Jasper应助久怨采纳,获得50
7秒前
阳和启蛰完成签到 ,获得积分10
8秒前
lvzhechen发布了新的文献求助10
8秒前
123发布了新的文献求助10
10秒前
Tian完成签到 ,获得积分10
12秒前
嘟嘟完成签到,获得积分10
12秒前
bendanzxx完成签到,获得积分10
13秒前
13秒前
Akim应助lixiang采纳,获得10
14秒前
HNDuan完成签到,获得积分10
15秒前
平常的毛豆应助lvzhechen采纳,获得10
15秒前
xiaolin应助lvzhechen采纳,获得10
15秒前
小熊发布了新的文献求助10
15秒前
溴氧铋发布了新的文献求助20
16秒前
张又蓝发布了新的文献求助10
18秒前
19秒前
大模型应助迷人听双采纳,获得10
20秒前
21秒前
23秒前
jenningseastera应助yvxi采纳,获得10
24秒前
26秒前
SYLH应助MethaForbid采纳,获得10
27秒前
27秒前
852应助清爽海白采纳,获得10
27秒前
Suchen136发布了新的文献求助10
27秒前
酪酪Alona完成签到,获得积分10
28秒前
29秒前
lixiang发布了新的文献求助10
29秒前
张又蓝完成签到,获得积分10
29秒前
万仁杰发布了新的文献求助10
31秒前
领导范儿应助源气满满采纳,获得10
31秒前
贺万万完成签到,获得积分20
31秒前
33秒前
筱菱完成签到 ,获得积分10
34秒前
yt发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797577
求助须知:如何正确求助?哪些是违规求助? 3342959
关于积分的说明 10314242
捐赠科研通 3059647
什么是DOI,文献DOI怎么找? 1679045
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763093