A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD

慢性阻塞性肺病 无线电技术 医学 支持向量机 逻辑回归 特征选择 接收机工作特性 人工智能 阶段(地层学) 放射科 内科学 计算机科学 生物 古生物学
作者
LI Zong-li,Ligong Liu,Zuoqing Zhang,Xuhong Yang,Xuanyi Li,Yanli Gao,Kewu Huang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (5): 663-673 被引量:35
标识
DOI:10.1016/j.acra.2022.01.004
摘要

Rationale and Objectives

To evaluate the role of radiomics based on Chest Computed Tomography (CT) in the identification and severity staging of chronic obstructive pulmonary disease (COPD).

Materials and Methods

This retrospective analysis included 322 participants (249 COPD patients and 73 control subjects). In total, 1395 chest CT-based radiomics features were extracted from each participant's CT images. Three feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO), and two classification methods, including support vector machine (SVM) and logistic regression (LR), were used as identification and severity classification of COPD. Performance was compared by AUC, accuracy, sensitivity, specificity, precision, and F1-score.

Results

38 and 10 features were selected to construct radiomics models to detect and stage COPD, respectively. For COPD identification, SVM classifier achieved AUCs of 0.992 and 0.970, while LR classifier achieved AUCs of 0.993 and 0.972 in the training set and test set, respectively. For the severity staging of COPD, the mentioned two machine learning classifiers can better differentiate less severity (GOLD1 + GOLD2) group from greater severity (GOLD3 + GOLD4) group. The AUCs of SVM and LR is 0.907 and 0.903 in the training set, and that of 0.799 and 0.797 in the test set.

Conclusion

The present study showed that the novel radiomics approach based on chest CT images that can be used for COPD identification and severity classification, and the constructed radiomics model demonstrated acceptable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HL完成签到 ,获得积分10
1秒前
愉快竺发布了新的文献求助30
1秒前
一澜发布了新的文献求助10
4秒前
4秒前
5秒前
烟花应助芋泥夹心采纳,获得10
6秒前
111发布了新的文献求助10
8秒前
熊巴巴发布了新的文献求助20
10秒前
丰富飞阳发布了新的文献求助10
11秒前
栗子完成签到 ,获得积分10
13秒前
111完成签到,获得积分20
15秒前
CipherSage应助舒服的踏歌采纳,获得10
16秒前
英俊的铭应助HopeStar采纳,获得10
18秒前
乐乐应助阿匡采纳,获得10
18秒前
所所应助霜霜采纳,获得10
19秒前
脑洞疼应助打死小胖纸采纳,获得30
22秒前
小蘑菇应助岩岫清风采纳,获得10
23秒前
23秒前
25秒前
躺赢完成签到 ,获得积分10
25秒前
Rain完成签到,获得积分10
26秒前
28秒前
Nniu完成签到,获得积分10
29秒前
29秒前
科研通AI5应助一澜采纳,获得10
29秒前
坚强的小蘑菇完成签到 ,获得积分10
30秒前
HopeStar发布了新的文献求助10
30秒前
ding应助Rain采纳,获得30
32秒前
可爱牛排发布了新的文献求助50
33秒前
JamesPei应助zhk采纳,获得10
33秒前
小李子完成签到 ,获得积分10
34秒前
37秒前
科目三应助清脆水卉采纳,获得10
38秒前
39秒前
40秒前
hdy331完成签到,获得积分10
41秒前
科研小白发布了新的文献求助10
43秒前
楚楚楚完成签到,获得积分10
43秒前
43秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794562
求助须知:如何正确求助?哪些是违规求助? 3339387
关于积分的说明 10295828
捐赠科研通 3056074
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762191