A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD

慢性阻塞性肺病 无线电技术 医学 支持向量机 逻辑回归 特征选择 接收机工作特性 人工智能 阶段(地层学) 放射科 内科学 计算机科学 生物 古生物学
作者
LI Zong-li,Ligong Liu,Zuoqing Zhang,Xuhong Yang,Xuanyi Li,Yanli Gao,Kewu Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (5): 663-673 被引量:46
标识
DOI:10.1016/j.acra.2022.01.004
摘要

Rationale and Objectives

To evaluate the role of radiomics based on Chest Computed Tomography (CT) in the identification and severity staging of chronic obstructive pulmonary disease (COPD).

Materials and Methods

This retrospective analysis included 322 participants (249 COPD patients and 73 control subjects). In total, 1395 chest CT-based radiomics features were extracted from each participant's CT images. Three feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO), and two classification methods, including support vector machine (SVM) and logistic regression (LR), were used as identification and severity classification of COPD. Performance was compared by AUC, accuracy, sensitivity, specificity, precision, and F1-score.

Results

38 and 10 features were selected to construct radiomics models to detect and stage COPD, respectively. For COPD identification, SVM classifier achieved AUCs of 0.992 and 0.970, while LR classifier achieved AUCs of 0.993 and 0.972 in the training set and test set, respectively. For the severity staging of COPD, the mentioned two machine learning classifiers can better differentiate less severity (GOLD1 + GOLD2) group from greater severity (GOLD3 + GOLD4) group. The AUCs of SVM and LR is 0.907 and 0.903 in the training set, and that of 0.799 and 0.797 in the test set.

Conclusion

The present study showed that the novel radiomics approach based on chest CT images that can be used for COPD identification and severity classification, and the constructed radiomics model demonstrated acceptable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
谦让山槐完成签到 ,获得积分10
1秒前
不懈奋进应助马小梁采纳,获得30
1秒前
达尔文完成签到,获得积分10
1秒前
彭于晏应助lijiayi采纳,获得10
2秒前
英勇的绮烟完成签到 ,获得积分10
2秒前
2秒前
夏春丽完成签到 ,获得积分10
2秒前
shuwu完成签到,获得积分20
2秒前
2秒前
鱼粉发布了新的文献求助10
3秒前
4秒前
酷波er应助研友_5Zl9D8采纳,获得10
4秒前
4秒前
4秒前
shuwu发布了新的文献求助10
4秒前
5秒前
狂野语山发布了新的文献求助10
6秒前
ai zs发布了新的文献求助10
6秒前
orixero应助卧室哒帅哥采纳,获得10
6秒前
牧云完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
10秒前
10秒前
Duuuuu完成签到,获得积分10
10秒前
听风随影完成签到 ,获得积分10
11秒前
无期发布了新的文献求助10
13秒前
14秒前
kath发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
CodeCraft应助zxj采纳,获得10
19秒前
19秒前
ccc完成签到,获得积分10
20秒前
有魅力书雪完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690