A Novel CT-Based Radiomics Features Analysis for Identification and Severity Staging of COPD

慢性阻塞性肺病 无线电技术 医学 支持向量机 逻辑回归 特征选择 接收机工作特性 人工智能 阶段(地层学) 放射科 内科学 计算机科学 生物 古生物学
作者
LI Zong-li,Ligong Liu,Zuoqing Zhang,Xuhong Yang,Xuanyi Li,Yanli Gao,Kewu Huang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (5): 663-673 被引量:40
标识
DOI:10.1016/j.acra.2022.01.004
摘要

Rationale and Objectives

To evaluate the role of radiomics based on Chest Computed Tomography (CT) in the identification and severity staging of chronic obstructive pulmonary disease (COPD).

Materials and Methods

This retrospective analysis included 322 participants (249 COPD patients and 73 control subjects). In total, 1395 chest CT-based radiomics features were extracted from each participant's CT images. Three feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO), and two classification methods, including support vector machine (SVM) and logistic regression (LR), were used as identification and severity classification of COPD. Performance was compared by AUC, accuracy, sensitivity, specificity, precision, and F1-score.

Results

38 and 10 features were selected to construct radiomics models to detect and stage COPD, respectively. For COPD identification, SVM classifier achieved AUCs of 0.992 and 0.970, while LR classifier achieved AUCs of 0.993 and 0.972 in the training set and test set, respectively. For the severity staging of COPD, the mentioned two machine learning classifiers can better differentiate less severity (GOLD1 + GOLD2) group from greater severity (GOLD3 + GOLD4) group. The AUCs of SVM and LR is 0.907 and 0.903 in the training set, and that of 0.799 and 0.797 in the test set.

Conclusion

The present study showed that the novel radiomics approach based on chest CT images that can be used for COPD identification and severity classification, and the constructed radiomics model demonstrated acceptable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫雪发布了新的文献求助10
1秒前
GZY发布了新的文献求助10
1秒前
2秒前
toto发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
脊柱小白菜完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
狂野的锦程完成签到,获得积分10
6秒前
6秒前
江城一霸完成签到,获得积分10
7秒前
8秒前
射天狼发布了新的文献求助10
8秒前
oc666888发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
FUTURE完成签到,获得积分10
9秒前
lu发布了新的文献求助10
9秒前
10秒前
8R60d8应助fdyy1采纳,获得10
11秒前
小李完成签到,获得积分10
11秒前
11秒前
浮游应助Rocky_Qi采纳,获得10
12秒前
12秒前
欣喜的秋莲完成签到,获得积分20
13秒前
13秒前
冷静青文发布了新的文献求助10
13秒前
傻丢发布了新的文献求助10
13秒前
111完成签到,获得积分10
14秒前
cjj发布了新的文献求助10
15秒前
15秒前
华仔应助舒心飞珍采纳,获得10
16秒前
17秒前
高青青发布了新的文献求助10
17秒前
cheese完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726429
求助须知:如何正确求助?哪些是违规求助? 4083629
关于积分的说明 12629637
捐赠科研通 3790089
什么是DOI,文献DOI怎么找? 2093051
邀请新用户注册赠送积分活动 1118819
科研通“疑难数据库(出版商)”最低求助积分说明 995288