In Situ Mitigating Cation Mixing of Ni-Rich Cathode at High Voltage Via Li2mno3 Injection

阴极 原位 混合(物理) 材料科学 电压 化学 电气工程 物理 物理化学 工程类 量子力学 有机化学
作者
Binhong Wu,Gaige Zhang,Dehui� Zhang,Wenguang Zhang,Guanjie Li,Yanxia Che,Ling Chen,Huirong Wang,Weishan Li,Min Chen,Guozhong Cao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:2
标识
DOI:10.2139/ssrn.4021781
摘要

Ni-rich layered oxides (LiNixCoyMnzO2, x≥0.8) have been under intense investigation as cathode materials for high-energy rechargeable lithium ion batteries (LIBs) due to their high capacity and relatively low cost. However, Ni/Li cation mixing, brings about capacity degradation, structure evolution and poor thermal stability, especially at high cut-off voltage. The present work provides an innovative strategy of in-situ mitigating cation mixing for LiNi0.8Co0.1Mn0.1O2 (NCM811) at 4.55V by injecting Li2MnO3 (label as LD-NCM811). The resulting LD-NCM811 exhibits excellent electrochemical property, structural integrity and better thermal stability when compared to conventional NCM811. LD-NCM811 maintains high capacity retention of 93% at 0.3 C after 200 cycles at 25 °C with negligible voltage decay of 40 mV, whereas the NCM811 with a retention of 68% and large voltage decay of 248 mV, with the corresponding cation mixing being mitigated from 13.5% to 7.5%. At the temperature of 45 °C, LD-NCM811 still keeps a considerable capacity retention of 93% at 1 C, significantly superior to the NCM811 with 75%. Characterization and calculation reveal that the excellent performances results from the Li2MnO3 phase with unique superlattice providing lithium voids in transition metal (TM) oxide layers when it is charged above 4.5 V, which is favorable for the mixed Ni ions migrating back to TM layers instead of blocking the lithium channel. This new finding establishes a general strategy for mitigating cation mixing of NCM811 to realize its application in high energy density and safety batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
苗条的冰棍完成签到,获得积分10
2秒前
3秒前
Q Eason发布了新的文献求助10
3秒前
彦卿完成签到 ,获得积分10
6秒前
Yang发布了新的文献求助50
6秒前
能干向露发布了新的文献求助10
7秒前
无所屌谓完成签到,获得积分10
7秒前
领导范儿应助小甑采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI5应助程程采纳,获得10
13秒前
14秒前
zoe完成签到,获得积分10
15秒前
乃惜发布了新的文献求助10
15秒前
祺玄完成签到,获得积分10
16秒前
16秒前
myuniv完成签到,获得积分10
18秒前
20秒前
myuniv发布了新的文献求助10
22秒前
冰冰完成签到 ,获得积分10
25秒前
程程发布了新的文献求助10
26秒前
敬敬完成签到,获得积分10
29秒前
英姑应助急躁科研人采纳,获得10
30秒前
30秒前
黄小鱼儿完成签到,获得积分10
30秒前
HLElxs完成签到 ,获得积分10
30秒前
DUNK完成签到,获得积分10
31秒前
安静的如冬完成签到,获得积分10
33秒前
_u_ii完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
小马甲应助梅雨季来信采纳,获得10
35秒前
程程完成签到,获得积分10
35秒前
科目三应助myuniv采纳,获得10
36秒前
独特乘风完成签到,获得积分10
38秒前
38秒前
科研通AI5应助优雅莞采纳,获得10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4214913
求助须知:如何正确求助?哪些是违规求助? 3749241
关于积分的说明 11793944
捐赠科研通 3415431
什么是DOI,文献DOI怎么找? 1874328
邀请新用户注册赠送积分活动 928518
科研通“疑难数据库(出版商)”最低求助积分说明 837637