Prediction of Recurrent Ischemic Stroke Using Registry Data and Machine Learning Methods: The Erlangen Stroke Registry

医学 冲程(发动机) 机器学习 预测建模 人工智能 物理疗法 计算机科学 机械工程 工程类
作者
Asmir Vodenčarević,Michael Weingärtner,J. Jaime,Dubravka Ukalovic,Marcus Zimmermann-Rittereiser,Stefan Schwab,Peter L. Kolominsky‐Rabas
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:53 (7): 2299-2306 被引量:30
标识
DOI:10.1161/strokeaha.121.036557
摘要

Background: There have been multiple efforts toward individual prediction of recurrent strokes based on structured clinical and imaging data using machine learning algorithms. Some of these efforts resulted in relatively accurate prediction models. However, acquiring clinical and imaging data is typically possible at provider sites only and is associated with additional costs. Therefore, we developed recurrent stroke prediction models based solely on data easily obtained from the patient at home. Methods: Data from 384 patients with ischemic stroke were obtained from the Erlangen Stroke Registry. Patients were followed at 3 and 12 months after first stroke and then annually, for about 2 years on average. Multiple machine learning algorithms were applied to train predictive models for estimating individual risk of recurrent stroke within 1 year. Double nested cross-validation was utilized for conservative performance estimation and models’ learning capabilities were assessed by learning curves. Predicted probabilities were calibrated, and relative variable importance was assessed using explainable artificial intelligence techniques. Results: The best model achieved the area under the curve of 0.70 (95% CI, 0.64–0.76) and relatively good probability calibration. The most predictive factors included patient’s family and housing circumstances, rehabilitative measures, age, high calorie diet, systolic and diastolic blood pressures, percutaneous endoscopic gastrotomy, number of family doctor’s home visits, and patient’s mental state. Conclusions: Developing fairly accurate models for individual risk prediction of recurrent ischemic stroke within 1 year solely based on registry data is feasible. Such models could be applied in a home setting to provide an initial risk assessment and identify high-risk patients early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吊炸天完成签到 ,获得积分10
1秒前
香蕉觅云应助Marshall采纳,获得30
1秒前
1秒前
研友_ZGmVjL完成签到,获得积分10
2秒前
萍苹平发布了新的文献求助10
3秒前
脑洞疼应助lskjdflass采纳,获得10
4秒前
田様应助Yuh采纳,获得10
5秒前
6秒前
7秒前
Yong发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
rrrrrrun完成签到,获得积分10
12秒前
逍遥游发布了新的文献求助10
15秒前
bym发布了新的文献求助10
15秒前
rrrrrrun发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
五五发布了新的文献求助10
16秒前
Shell完成签到,获得积分10
16秒前
汉堡包应助羽化采纳,获得10
17秒前
19秒前
19秒前
星辰大海应助bym采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
orixero应助小新爱看文献采纳,获得10
21秒前
sy1639完成签到,获得积分10
21秒前
科研通AI6.1应助凉凉不凉采纳,获得10
23秒前
07clean发布了新的文献求助10
23秒前
乐乐应助萍苹平采纳,获得10
23秒前
淡然的天佑完成签到,获得积分10
23秒前
23秒前
黄小珍完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5819686
求助须知:如何正确求助?哪些是违规求助? 5961506
关于积分的说明 15553450
捐赠科研通 4941540
什么是DOI,文献DOI怎么找? 2661555
邀请新用户注册赠送积分活动 1607856
关于科研通互助平台的介绍 1562799