Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions

材料科学 光纤布拉格光栅 光纤 光电子学 纤维 催化作用 热的 纳米尺度 涂层 光学 窄带 纳米技术 复合材料 化学 波长 生物化学 物理 气象学
作者
Zhi Li,Yongguang Xiao,Fu Liu,Xiangyu Yan,Daotong You,Kaiwei Li,Lixi Zeng,Mingshan Zhu,Gaozhi Xiao,Jacques Albert,Tuan Guo
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:11 (1) 被引量:51
标识
DOI:10.1038/s41377-022-00914-5
摘要

In situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst's surfaces. However, existing techniques are largely unable to capture the rapidly changing temperatures occurring in sub-μm layers at liquid-solid interfaces exposed to light. To address this, a sensing system based on a gold-coated conventional single-mode optical fiber with a tilted fiber Bragg grating inscribed in the fiber core is proposed and demonstrated. The spectral transmission from these devices is made up of a dense comb of narrowband resonances that can differentiate between localized temperatures rapid changes at the catalyst's surface and those of the environment. By using the gold coating of the fiber as an electrode in an electrochemical reactor and exposing it to light, thermal effects in photo-induced catalysis at the interface can be decoded with a temperature resolution of 0.1 °C and a temporal resolution of 0.1 sec, without perturbing the catalytic operation that is measured simultaneously. As a demonstration, stable and reproducible correlations between the light-to-heat conversion and catalytic activities over time were measured for two different catalysis processes (linear and nonlinear). These kinds of sensing applications are ideally suited to the fundamental qualities of optical fiber sensors, such as their compact size, flexible shape, and remote measurement capability, thereby opening the way for various thermal monitoring in hard-to-reach spaces and rapid catalytic reaction processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa121599完成签到,获得积分20
1秒前
周em12_完成签到,获得积分10
2秒前
3秒前
我不到啊完成签到,获得积分10
3秒前
友好的妍完成签到 ,获得积分10
4秒前
陈江河完成签到,获得积分20
6秒前
天真幻珊完成签到 ,获得积分10
7秒前
MNF完成签到,获得积分10
8秒前
9秒前
可带玉米完成签到 ,获得积分10
11秒前
13秒前
13秒前
jiang完成签到,获得积分10
13秒前
15秒前
含糊的代丝完成签到 ,获得积分10
15秒前
风趣夜云完成签到,获得积分10
16秒前
痴情的雁易完成签到,获得积分10
17秒前
罗蜜欧发布了新的文献求助10
18秒前
黑妖完成签到,获得积分10
19秒前
20秒前
jopaul发布了新的文献求助10
20秒前
科研通AI5应助稳重奇异果采纳,获得10
21秒前
木柟完成签到 ,获得积分10
22秒前
长安888发布了新的文献求助10
22秒前
周周完成签到,获得积分10
23秒前
dudu完成签到 ,获得积分10
24秒前
暮晓见完成签到 ,获得积分10
26秒前
所所应助美好雁荷采纳,获得10
27秒前
科研通AI2S应助Lucia采纳,获得10
29秒前
天啦噜完成签到 ,获得积分10
29秒前
嘻嘻哈哈完成签到 ,获得积分10
29秒前
清晨的小鹿完成签到,获得积分10
32秒前
jopaul完成签到,获得积分10
32秒前
32秒前
乐乐应助coffee333采纳,获得10
32秒前
李友健完成签到 ,获得积分10
33秒前
35秒前
科研通AI5应助仪小彤采纳,获得30
35秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304