PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing

计算机科学 边缘计算 信息隐私 GSM演进的增强数据速率 隐私保护 理论计算机科学 计算机安全 人工智能
作者
Hao Zhou,Geng Yang,Hua Dai,Guoxiu Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 1905-1918 被引量:62
标识
DOI:10.1109/tifs.2022.3174394
摘要

Federated learning (FL) can protect clients' privacy from leakage in distributed machine learning. Applying federated learning to edge computing can protect the privacy of edge clients and benefit edge computing. Nevertheless, eavesdroppers can analyze the parameter information to specify clients' private information and model features. And it is difficult to achieve a high privacy level, convergence, and low communication overhead during the entire process in the FL framework. In this paper, we propose a novel privacy-preserving federated learning framework for edge computing (PFLF). In PFLF, each client and the application server add noise before sending the data. To protect the privacy of clients, we design a flexible arrangement mechanism to count the optimal training times for clients. We prove that PFLF guarantees the privacy of clients and servers during the entire training process. Then, we theoretically prove that PFLF has three main properties: 1) For a given privacy level and model aggregation times, there is an optimal number of participating times for clients; 2) There is an upper and lower bound of convergence; 3) PFLF achieves low communication overhead by designing a flexible participation training mechanism. Simulation experiments confirm the correctness of our theoretical analysis. Therefore, PFLF helps design a framework to balance privacy levels and convergence and achieve low communication overhead when there is a part of clients dropping out of training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fsy应助读心理学导致的采纳,获得10
2秒前
浮游应助橘子橙子采纳,获得50
2秒前
2秒前
落叶为谁殇完成签到,获得积分10
2秒前
共享精神应助欢呼的映秋采纳,获得30
3秒前
5秒前
5秒前
nenoaowu发布了新的文献求助10
7秒前
zyy发布了新的文献求助30
8秒前
学术疯子发布了新的文献求助10
9秒前
10秒前
露露发布了新的文献求助30
10秒前
11秒前
11秒前
小华安发布了新的文献求助10
12秒前
14秒前
糖醋花孙米完成签到,获得积分10
15秒前
在水一方应助云墨采纳,获得10
15秒前
盛欢发布了新的文献求助10
16秒前
汉堡包应助osh111采纳,获得10
16秒前
科研通AI2S应助西门百招采纳,获得10
17秒前
17秒前
CipherSage应助yurig采纳,获得10
18秒前
18秒前
CodeCraft应助幼汁汁鬼鬼采纳,获得10
18秒前
情怀应助学术混子采纳,获得10
18秒前
19秒前
20秒前
陌路完成签到,获得积分10
21秒前
幽默的小之完成签到,获得积分10
21秒前
李健的小迷弟应助zyy采纳,获得10
21秒前
21秒前
keyring完成签到 ,获得积分10
22秒前
22秒前
mz完成签到,获得积分10
22秒前
耶瑟儿发布了新的文献求助10
23秒前
小熊熊发布了新的文献求助10
23秒前
enen发布了新的文献求助10
23秒前
乐乐应助可靠的思烟采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917