非线性滤波器
伯努利分布
伯努利原理
非线性系统
高斯分布
滤波器(信号处理)
高斯噪声
数学
卡尔曼滤波器
状态向量
白噪声
随机变量
噪音(视频)
噪音的颜色
加性高斯白噪声
应用数学
算法
控制理论(社会学)
计算机科学
滤波器设计
统计
人工智能
物理
控制(管理)
量子力学
经典力学
图像(数学)
计算机视觉
热力学
作者
Chenghao Shan,Weidong Zhou,Zihao Jiang,Hanyu Shan
标识
DOI:10.1016/j.dsp.2021.103358
摘要
The filtering issue of a nonlinear system with colored non-stationary heavy-tailed measurement noise (CNSHMN) is addressed in this study via designing a new Gaussian approximate filter. By utilizing the state expansion method and the measurement difference method, the nonlinear filtering problem with the one-step delayed state and the white non-stationary heavy-tailed measurement noise (NSHMN) after the difference is turned into the traditional nonlinear filtering problem with NSHMN. A Gaussian student t-mixed distribution (GSTM) with Bernoulli random variable is utilized to describe the differenced measurement noise. The state vector, intermediate random variables (IRV), mixed probability and Bernoulli random variable (BRV) are simultaneously inferred by introducing variational Bayesian (VB) technique. Target tracking simulation examples reveal that the proposed filter is superior to the existing methods in the nonlinear filtering issue of CNSHMN.
科研通智能强力驱动
Strongly Powered by AbleSci AI