Multi-Source Separation Under Two “Blind” Conditions for Fiber-Optic Distributed Acoustic Sensor

盲信号分离 独立成分分析 固定点算法 混合(物理) 源分离 计算机科学 声学 信号(编程语言) 降噪 数学 模式识别(心理学) 算法 人工智能 物理 电信 频道(广播) 量子力学 程序设计语言
作者
Huijuan Wu,Yimeng Liu,Yunlin Tu,Yuwen Sun,Dengke Gan,Yuanfeng Song,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2601-2611 被引量:17
标识
DOI:10.1109/jlt.2022.3142020
摘要

Significant progress has been made in single source recognition for fiber-optical distributed acoustic sensor (DAS). However, it is still challenging to detect and identify more than one unpredictable vibration sources when they are superimposed at the same fiber receiving point. Thus, in this paper it is proposed a blind multi-source separation method based on fast independent component analysis (FastICA), which utilizes the independency and non-Gaussianity of different sources. Firstly, two multi-source mixing mechanisms and separability of different sources received by DAS based on Φ-OTDR are discussed; to solve the two "blind" problems that the source number and the mixing mode are both unknown, a linear simultaneous mixing mode is assumed, and the source number is estimated by singular value decomposition to the observation matrix; then preprocessing of denoising and anti-mixing, and separation with FastICA by maximizing negative entropy are carried out to make the non-Gaussianity of the estimated signal achieve its maximum; finally, feasibility of the separation method is evaluated through several mixing cases including simulations with two to four field collected signals and a real field test with two sources superimposed on the buried fiber. Signal waves and the spectra, and three separation indicators, such as the Performance Index (PI), the signal correlation coefficients, and the signal mean square error (SMSE), are used to evaluate the performance of the method. As far as we know, it is the first time to realize the separation of an unknown number of the superimposed sources detected by DAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到,获得积分10
刚刚
童心未泯发布了新的文献求助10
1秒前
李李李李李完成签到,获得积分10
4秒前
5秒前
yangmiemie发布了新的文献求助10
5秒前
CipherSage应助黄逗腐采纳,获得10
8秒前
童心未泯完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助怡然幼枫采纳,获得10
10秒前
qiuiqiu1111发布了新的文献求助80
11秒前
16秒前
汉堡包应助俏皮的鼠标采纳,获得10
17秒前
19秒前
山河发布了新的文献求助30
20秒前
余味应助hanspro采纳,获得10
22秒前
qiuiqiu1111完成签到,获得积分10
23秒前
北风完成签到,获得积分10
25秒前
一方完成签到 ,获得积分10
26秒前
28秒前
31秒前
32秒前
悄悄拔尖儿完成签到 ,获得积分10
33秒前
hanspro发布了新的文献求助10
35秒前
风趣雪一发布了新的文献求助20
39秒前
43秒前
清水小镇发布了新的文献求助10
46秒前
Mastar完成签到,获得积分10
46秒前
huco完成签到,获得积分10
47秒前
MarvelerYB3完成签到 ,获得积分10
49秒前
52秒前
清水小镇完成签到,获得积分10
53秒前
老实的初丹完成签到 ,获得积分10
55秒前
比大家完成签到,获得积分10
58秒前
59秒前
沉甸甸发布了新的文献求助10
59秒前
仁爱柠檬完成签到,获得积分10
1分钟前
田様应助zhangsudi采纳,获得10
1分钟前
40873完成签到,获得积分10
1分钟前
满意的晓啸完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872