Polyethylene terephthalate (PET) and CO2, two chemical wastes that urgently need to be transformed in the environment, are converted simultaneously in a one-pot catalytic process through the synergistic coupling of three reactions: CO2 hydrogenation, PET methanolysis and dimethyl terephthalate (DMT) hydrogenation. More interestingly, the chemicals equilibria of both reactions were shifted forward due to a revealed dual-promotion effect, leading to significantly enhanced PET depolymerization. The overall methanol yield from CO2 hydrogenation exceeded the original thermodynamic equilibrium limit since the methanol was in-situ consumed in PET methanolysis. The degradation of PET by a stoichiometric ratio of methanol was significantly enhanced because the primary product, DMT was hydrogenated to dimethyl cyclohexanedicarboxylate (DMCD) or p-xylene (PX). This synergistic catalytic process provides an effective way to simultaneously recycle two wastes, polyesters and CO2, for producing high-value chemicals.