Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in Buildings

卷积神经网络 计算机科学 障碍物 学习迁移 人工智能 深度学习 范围(计算机科学) 任务(项目管理) 人工神经网络 目标检测 机器学习 计算机视觉 模式识别(心理学) 工程类 法学 系统工程 程序设计语言 政治学
作者
Ç. F. Özgenel,Arzu Gönenç Sorguç
出处
期刊:Proceedings of the ... ISARC 被引量:207
标识
DOI:10.22260/isarc2018/0094
摘要

Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in Buildings Ç.F. Özgenel and Arzu Gönenç Sorguç Pages 693-700 (2018 Proceedings of the 35th ISARC, Berlin, Germany, ISBN 978-3-00-060855-1, ISSN 2413-5844) Abstract: Crack detection has vital importance for structural health monitoring and inspection of buildings. The task is challenging for computer vision methods as cracks have only low-level features for detection which are easily confused with background texture, foreign objects and/ or irregularities in construction. In addition, difficulties such as inhomogeneous illumination and irregularities in construction present an obstacle for fully autonomous crack detection in the course of building inspection and monitoring. Convolutional neural networks (CNN’s) are promising frameworks for crack detection with high accuracy and precision. Furthermore, being able to adapt pretrained networks to custom tasks by means of transfer learning enables users to utilize CNN’s without the requirement of deep understanding and knowledge of algorithms. Yet, acknowledging the limitations and points to consider in the course of employing CNN’s have great importance especially in fields which the results have vital importance such as crack detection in buildings. Within the scope of this study, a multidimensional performance analysis of highly acknowledged pretrained networks with respect to the size of training dataset, depth of networks, number of epochs for training and expandability to other material types utilized in buildings is conducted. By this means, it is aimed to develop an insight for new researchers and highlight the points to consider while applying CNN’s for crack detection task. Keywords: Crack Detection in Buildings, Convolutional Neural Networks, Transfer Learning DOI: https://doi.org/10.22260/ISARC2018/0094 Download fulltext Download BibTex Download Endnote (RIS) TeX Import to Mendeley
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪儿完成签到 ,获得积分10
4秒前
5秒前
wenbinvan完成签到,获得积分0
8秒前
10秒前
14秒前
Wang发布了新的文献求助10
14秒前
郭德久完成签到 ,获得积分0
15秒前
NexusExplorer应助武雨寒采纳,获得10
15秒前
热情的抽屉完成签到 ,获得积分10
16秒前
曹国庆完成签到 ,获得积分10
17秒前
热情的抽屉关注了科研通微信公众号
23秒前
啦啦啦完成签到 ,获得积分10
25秒前
yansisi完成签到 ,获得积分10
25秒前
MiSD完成签到,获得积分10
28秒前
41秒前
lingling完成签到 ,获得积分10
41秒前
41秒前
鄂老三发布了新的文献求助10
45秒前
zzy完成签到 ,获得积分10
46秒前
深情安青应助武雨寒采纳,获得10
49秒前
50秒前
jinjing完成签到,获得积分10
51秒前
晓晓马儿完成签到 ,获得积分10
55秒前
xyjf15发布了新的文献求助10
55秒前
曹福志完成签到 ,获得积分10
56秒前
59秒前
嗯嗯完成签到 ,获得积分10
1分钟前
高冰冰完成签到 ,获得积分10
1分钟前
wmz完成签到 ,获得积分10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
小叶子完成签到 ,获得积分10
1分钟前
szx233完成签到 ,获得积分10
1分钟前
1分钟前
呆橘完成签到 ,获得积分10
1分钟前
愉快若剑完成签到,获得积分10
1分钟前
鄂老三完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
甜甜圈完成签到 ,获得积分10
1分钟前
saywhy完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174834
求助须知:如何正确求助?哪些是违规求助? 4364200
关于积分的说明 13586280
捐赠科研通 4213063
什么是DOI,文献DOI怎么找? 2310934
邀请新用户注册赠送积分活动 1309889
关于科研通互助平台的介绍 1257694