自闭症
失调
微生物群
益生菌
罗伊乳杆菌
生物
肠道菌群
病因学
医学
肠-脑轴
遗传学
免疫学
细菌
内科学
精神科
作者
Laure Tabouy,Dimitry Getselter,Ziv Oren,Marcela V. Karpuj,Timothée Tabouy,Iva Lukić,Rasha Maayouf,Nir Werbner,Hila Ben-Amram,Meital Nuriel‐Ohayon,Omry Koren,Evan Elliott
标识
DOI:10.1016/j.bbi.2018.05.015
摘要
Recent studies have determined that the microbiome has direct effects on behavior, and may be dysregulated in neurodevelopmental conditions. Considering that neurodevelopmental conditions, such as autism, have a strong genetic etiology, it is necessary to understand if genes associated with neurodevelopmental disorders, such as Shank3, can influence the gut microbiome, and if probiotics can be a therapeutic tool. In this study, we have identified dysregulation of several genera and species of bacteria in the gut and colon of both male and female Shank3 KO mice. L. reuteri, a species with decreased relative abundance in the Shank3 KO mice, positively correlated with the expression of gamma-Aminobutyric acid (GABA) receptor subunits in the brain. Treatment of Shank3 KO mice with L. reuteri induced an attenuation of unsocial behavior specifically in male Shank3 mice, and a decrease in repetitive behaviors in both male and female Shank3 KO mice. In addition, L. reuteri treatment affected GABA receptor gene expression and protein levels in multiple brain regions. This study identifies bacterial species that are sensitive to an autism-related mutation, and further suggests a therapeutic potential for probiotic treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI