Machine learning–based prediction of clinical pain using multimodal neuroimaging and autonomic metrics

神经影像学 医学 疼痛评估 物理疗法 物理医学与康复 疼痛管理 精神科
作者
Jeungchan Lee,Ishtiaq Mawla,Jieun Kim,Marco L. Loggia,Ana Ortiz,Chang Jin Jung,Suk‐Tak Chan,Jessica Gerber,Vincent J. Schmithorst,Robert R. Edwards,Ajay D. Wasan,Chantal Berna,Jian Kong,Ted J. Kaptchuk,Randy L. Gollub,Bruce R. Rosen,Vitaly Napadow
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:160 (3): 550-560 被引量:126
标识
DOI:10.1097/j.pain.0000000000001417
摘要

Abstract Although self-report pain ratings are the gold standard in clinical pain assessment, they are inherently subjective in nature and significantly influenced by multidimensional contextual variables. Although objective biomarkers for pain could substantially aid pain diagnosis and development of novel therapies, reliable markers for clinical pain have been elusive. In this study, individualized physical maneuvers were used to exacerbate clinical pain in patients with chronic low back pain (N = 53), thereby experimentally producing lower and higher pain states. Multivariate machine-learning models were then built from brain imaging (resting-state blood-oxygenation-level-dependent and arterial spin labeling functional imaging) and autonomic activity (heart rate variability) features to predict within-patient clinical pain intensity states (ie, lower vs higher pain) and were then applied to predict between-patient clinical pain ratings with independent training and testing data sets. Within-patient classification between lower and higher clinical pain intensity states showed best performance (accuracy = 92.45%, area under the curve = 0.97) when all 3 multimodal parameters were combined. Between-patient prediction of clinical pain intensity using independent training and testing data sets also demonstrated significant prediction across pain ratings using the combined model (Pearson's r = 0.63). Classification of increased pain was weighted by elevated cerebral blood flow in the thalamus, and prefrontal and posterior cingulate cortices, and increased primary somatosensory connectivity to frontoinsular cortex. Our machine-learning approach introduces a model with putative biomarkers for clinical pain and multiple clinical applications alongside self-report, from pain assessment in noncommunicative patients to identification of objective pain endophenotypes that can be used in future longitudinal research aimed at discovery of new approaches to combat chronic pain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayou发布了新的文献求助10
刚刚
温暖芸发布了新的文献求助10
刚刚
刚刚
刚刚
李李完成签到 ,获得积分10
1秒前
creepppp完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
一锅炖不下完成签到,获得积分10
3秒前
3秒前
㊣㊣发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
怡然的炳发布了新的文献求助10
4秒前
哇哇哇发布了新的文献求助10
5秒前
5秒前
5秒前
温暖芸完成签到,获得积分10
6秒前
温暖翠阳完成签到,获得积分10
6秒前
强健的小霸王完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助超级元以采纳,获得10
6秒前
6秒前
陈陈完成签到,获得积分10
6秒前
6秒前
所所应助小懒鬼采纳,获得10
6秒前
7秒前
直率的鸿完成签到,获得积分10
7秒前
北夏暖完成签到,获得积分10
7秒前
张天完成签到,获得积分10
7秒前
研友_7ZekrL完成签到,获得积分10
7秒前
8秒前
情怀应助znn采纳,获得10
8秒前
GBKYWY完成签到,获得积分10
9秒前
无辜的醉波完成签到,获得积分10
9秒前
嘟嘟嘟发布了新的文献求助10
10秒前
Lucas应助嘎嘎采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707903
求助须知:如何正确求助?哪些是违规求助? 5186065
关于积分的说明 15251923
捐赠科研通 4861066
什么是DOI,文献DOI怎么找? 2609196
邀请新用户注册赠送积分活动 1559865
关于科研通互助平台的介绍 1517651