Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment

计算机科学 人工智能 认知障碍 心理学 认知 认知心理学 神经科学
作者
Peng Yang,Feng Zhou,Dong Ni,Yanwu Xu,Siping Chen,Tianfu Wang,Baiying Lei
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (1): 233-246 被引量:60
标识
DOI:10.1109/tcyb.2019.2940526
摘要

Alzheimer's disease (AD) is a neurodegenerative disease with an irreversible and progressive process. To understand the brain functions and identify the biomarkers of AD and early stages of the disease [also known as, mild cognitive impairment (MCI)], it is crucial to build the brain functional connectivity network (BFCN) using resting-state functional magnetic resonance imaging (rs-fMRI). Existing methods have been mainly developed using only a single time-point rs-fMRI data for classification. In fact, multiple time-point data is more effective than a single time-point data in diagnosing brain diseases by monitoring the disease progression patterns using longitudinal analysis. In this article, we utilize multiple rs-fMRI time-point to identify early MCI (EMCI) and late MCI (LMCI), by integrating the fused sparse network (FSN) model with parameter-free centralized (PFC) learning. Specifically, we first construct the FSN framework by building multiple time-point BFCNs. The multitask learning via PFC is then leveraged for longitudinal analysis of EMCI and LMCI. Accordingly, we can jointly learn the multiple time-point features constructed from the BFCN model. The proposed PFC method can automatically balance the contributions of different time-point information via learned specific and common features. Finally, the selected multiple time-point features are fused by a similarity network fusion (SNF) method. Our proposed method is evaluated on the public AD neuroimaging initiative phase-2 (ADNI-2) database. The experimental results demonstrate that our method can achieve quite promising performance and outperform the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究啥完成签到,获得积分10
2秒前
优雅莞完成签到,获得积分10
3秒前
Moonflower完成签到,获得积分10
6秒前
7秒前
fomo完成签到,获得积分10
9秒前
huanfid完成签到 ,获得积分0
9秒前
Lyw完成签到 ,获得积分10
11秒前
六等于三二一完成签到 ,获得积分10
15秒前
嘟嘟52edm完成签到 ,获得积分10
18秒前
Drtaoao完成签到 ,获得积分10
28秒前
爱静静应助阿枫采纳,获得30
28秒前
HC完成签到 ,获得积分10
36秒前
SCI完成签到 ,获得积分10
46秒前
48秒前
xiaoruixue完成签到,获得积分10
58秒前
105完成签到 ,获得积分10
1分钟前
1分钟前
福娃完成签到,获得积分10
1分钟前
自由擎汉发布了新的文献求助10
1分钟前
科研通AI2S应助zzf采纳,获得10
1分钟前
even完成签到 ,获得积分10
1分钟前
谦让成协完成签到,获得积分10
1分钟前
苗苗完成签到,获得积分10
1分钟前
老魏完成签到 ,获得积分10
1分钟前
那种完成签到,获得积分10
1分钟前
沐沐心完成签到 ,获得积分10
1分钟前
haoguang12345完成签到,获得积分10
1分钟前
shaw完成签到,获得积分10
1分钟前
余味完成签到,获得积分0
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
1分钟前
小个白完成签到,获得积分10
1分钟前
兴钬完成签到 ,获得积分10
2分钟前
2分钟前
dent强完成签到 ,获得积分10
2分钟前
qqaeao完成签到,获得积分10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800967
求助须知:如何正确求助?哪些是违规求助? 3346553
关于积分的说明 10329541
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763721